Skip to main content
Log in

Effect of Adding Transition Metals to Copper on the Dehydrogenation Reaction of Ethanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present work aims to investigate the effect adding Ag, Co, Ni, Cd and Pt to copper on ethanol dehydrogenation. The catalysts synthesized by deposition–precipitation method were characterized using various physicochemical methods such as N2 adsorption–desorption, TPR, SEM–EDX, XRD, XPS and TGA–DSC-MS. Catalytic evaluation results revealed that the predominant product of the reaction was acetaldehyde. Monometallic copper or mixed with Cd, Ag or Co show good catalytic performances. Adding nickel to copper improves the process conversion but reduces acetaldehyde selectivity, giving rise to methane in produced hydrogen. Pt-Cu/SiO2 catalyst guides the reaction towards diethyl ether. Time on stream tests performed during 12 h at 260 °C, showed that adding Cd to Cu enhances its stability by over 30% of conversion, this is explained by the reduction of copper crystallites sintering, which makes Cd-Cu/SiO2 a promising catalyst for the production of acetaldehyde by ethanol dehydrogenation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Garside M. Global distribution of ethanol production by country 2019. 2020 March.

  2. Santacesaria E, Carotenuto G, Tesser R et al (2012) Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts. Chem Eng J 179:209–220

    Article  CAS  Google Scholar 

  3. Abdulrazzaq HT, Schwartz TJ (2019) Catalytic Conversion of Ethanol to Commodity and Specialty Chemicals. Elsevier, Ethanol, pp 3–24

    Google Scholar 

  4. Gallo JM, Bueno J, Schuchardt U (2014) Catalytic transformations of ethanol for biorefineries. J Braz Chem Soc 25(12):2229–2243

    CAS  Google Scholar 

  5. Inui K, Kurabayashi T, Sato S (2002) Direct synthesis of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst. Appl Catal A 237(1–2):53–61

    Article  CAS  Google Scholar 

  6. Armstrong E, Hilditch T (1920) A study of catalytic actions at solid surfaces–III. The hydrogenation of acetaldehyde and the dehydrogenation of ethyl alcohol in presence of finely-divided metals. Proc R Soc Lond A. 97(684):259–264

    Article  CAS  Google Scholar 

  7. Raich B, Foley HC (1998) Ethanol dehydrogenation with a palladium membrane reactor: An alternative to wacker chemistry. Ind Eng Chem Res 37(10):3888–3895

    Article  CAS  Google Scholar 

  8. Shan J, Liu J, Li M et al (2018) NiCu single atom alloys catalyze the CH bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Appl Catal B 226:534–543

    Article  CAS  Google Scholar 

  9. Shan J, Janvelyan N, Li H et al (2017) Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys. Appl Catal B 205:541–550

    Article  CAS  Google Scholar 

  10. Sánchez AB, Homs N, Fierro J et al (2005) New supported Pd catalysts for the direct transformation of ethanol to ethyl acetate under medium pressure conditions. Catal Today 107:431–435

    Article  CAS  Google Scholar 

  11. De Waele J, Galvita VV, Poelman H et al (2018) PdZn nanoparticle catalyst formation for ethanol dehydrogenation: Active metal impregnation vs incorporation. Appl Catal A 555:12–19

    Article  CAS  Google Scholar 

  12. Abu-Zied B, El-Awad A (2001) The synergism of cadmium on the catalytic activity of Cd–Cr–O system: II. Ethanol decomposition, catalysts reducibility, and in situ electrical conductivity measurements. J Mol Catal A: Chem. https://doi.org/10.1016/S1381-1169(01)00263-1

    Article  Google Scholar 

  13. Abu-Zied BM (2000) Structural and catalytic activity studies of silver/chromia catalysts. Appl Catal A 198(1–2):139–153

    Article  CAS  Google Scholar 

  14. Szymański GS, Rychlicki G, Terzyk AP (1994) Catalytic conversion of ethanol on carbon catalysts. Carbon 32(2):265–271

    Article  Google Scholar 

  15. Liu B, Lian P, Zhao X (2003) A novel NiP–Cu composite membrane reactor for catalytic dehydrogenation of ethanol. Sep Purif Technol 32(1–3):281–287

    Article  CAS  Google Scholar 

  16. Mamontov G, Grabchenko M, Sobolev V et al (2016) Ethanol dehydrogenation over Ag-CeO2/SiO2 catalyst: role of Ag-CeO2 interface. Appl Catal A 528:161–167

    Article  CAS  Google Scholar 

  17. Sushkevich VL, Ivanova II, Taarning E (2013) Mechanistic Study of Ethanol Dehydrogenation over Silica-Supported Silver. ChemCatChem. 5(8):2367–2373

    Article  CAS  Google Scholar 

  18. Ciftci A, Ligthart DM, Pastorino P et al (2013) Nanostructured ceria supported Pt and Au catalysts for the reactions of ethanol and formic acid. Appl Catal B 130:325–335

    Article  CAS  Google Scholar 

  19. Guan Y, Hensen EJ (2009) Ethanol dehydrogenation by gold catalysts: The effect of the gold particle size and the presence of oxygen. Appl Catal A 361(1–2):49–56

    Article  CAS  Google Scholar 

  20. Church JM, Joshi HK (1951) Acetaldehyde by dehydrogenation of ethyl alcohol. Ind Eng Chem 43(8):1804–1811

    Article  CAS  Google Scholar 

  21. Chang F-W, Yang H-C, Roselin LS et al (2006) Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Appl Catal A 304:30–39

    Article  CAS  Google Scholar 

  22. Chung M-J, Han S-H, Park K-Y et al (1993) Differing characteristics of Cu and ZnO in dehydrogenation of ethanol: A deuterium exchange study. J Mol Catal 79(1–3):335–345

    Article  CAS  Google Scholar 

  23. Kanoun N, Astier M, Pajonk G (1993) Dehydrogenation of ethanol and CO2-H2 conversion on new coprecipitated Cu/Cr-Al catalysts. J Mol Catal 79(1–3):217–228

    Article  CAS  Google Scholar 

  24. Rajesh B, Sasirekha N, Chen Y-W et al (2007) Effect of Synthesis Parameters on the Characteristics of Fe− B Nanoalloys for Dehydrogenation of Ethanol. Ind Eng Chem Res 46(7):2034–2041

    Article  CAS  Google Scholar 

  25. Tu Y-J, Chen Y-W, Li C (1994) Deactivation of copper-based catalysts in alcohol dehydrogenation. Studies in Surface Science and Catalysis, 88. Elsevier, Amsterdam, pp 657–662

    Google Scholar 

  26. Tu YJ, Li C, Chen YW (1994) Effect of chromium promoter on copper catalysts in ethanol dehydrogenation. J Chem Technol Biotechnol 59(2):141–147

    Article  CAS  Google Scholar 

  27. Tu Y-J, Chen Y-W (1998) Effects of alkaline-earth oxide additives on silica-supported copper catalysts in ethanol dehydrogenation. Ind Eng Chem Res 37(7):2618–2622

    Article  CAS  Google Scholar 

  28. Tu Y-J, Chen Y-W (2001) Effects of alkali metal oxide additives on Cu/SiO2 catalyst in the dehydrogenation of ethanol. Ind Eng Chem Res 40(25):5889–5893

    Article  CAS  Google Scholar 

  29. Tu Y-J, Chen Y-W, Li C (1994) Characterization of unsupported copper—chromium catalysts for ethanol dehydrogenation. J Mol Catal 89(1–2):179–189

    Article  CAS  Google Scholar 

  30. Conesa J, Morales M, López-Olmos C et al (2019) Comparative study of Cu, Ag and Ag-Cu catalysts over graphite in the ethanol dehydrogenation reaction: Catalytic activity, deactivation and regeneration. Appl Catal A 576:54–64

    Article  CAS  Google Scholar 

  31. Franckaerts J, Froment G (1964) Kinetic study of the dehydrogenation of ethanol. Chem Eng Sci 19(10):807–818

    Article  CAS  Google Scholar 

  32. Kanoun N, Astier M, Pajonk G (1991) New vanadium-copper-zinc catalysts, their characterization and use in the catalytic dehydrogenation of ethanol. Appl Catal 70(1):225–236

    Article  CAS  Google Scholar 

  33. Xiaofei L, Haoxi J, Guiming L et al (2012) Investigation of Cu-Based catalyst for direct synthesis of ethyl acetate from ethanol: improvement of thermal stability of Cu–Cr–Zr composite oxide catalyst by addition of Mn promoter. Ind Eng Chem Res 51(26):8974–8978

    Article  CAS  Google Scholar 

  34. Fujita S-I, Iwasa N, Tani H et al (2001) Dehydrogenation of ethanol over Cu/ZnO catalysts prepared from various coprecipitated precursors. React Kinet Catal Lett 73(2):367–372

    Article  CAS  Google Scholar 

  35. Iwasa N, Takezawa N (1991) Reforming of Ethanol-Dehydrogenation to Ethyl Acetate and Steam Reforming to Acetic Acid over Copper-Based Catalysts–. Bull Chem Soc Jpn 64(9):2619–2623

    Article  CAS  Google Scholar 

  36. Lin W-H, Chang H-F (2004) A study of ethanol dehydrogenation reaction in a palladium membrane reactor. Catal Today 97(2–3):181–188

    Article  CAS  Google Scholar 

  37. Gole JL, White MG (2001) Nanocatalysis: selective conversion of ethanol to acetaldehyde using mono-atomically dispersed copper on silica nanospheres. J Catal 204(1):249–252

    Article  CAS  Google Scholar 

  38. Wang QN, Shi L, Lu AH (2015) Highly selective copper catalyst supported on mesoporous carbon for the dehydrogenation of ethanol to acetaldehyde. ChemCatChem. 7(18):2846–2852

    Article  CAS  Google Scholar 

  39. Morales M, Asedegbega-Nieto E, Bachiller-Baeza B et al (2016) Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite. Carbon 102:426–436

    Article  CAS  Google Scholar 

  40. Zhang P, Wang QN, Yang X et al (2017) A Highly Porous Carbon Support Rich in Graphitic-N Stabilizes Copper Nanocatalysts for Efficient Ethanol Dehydrogenation. ChemCatChem. 9(3):505–510

    Article  CAS  Google Scholar 

  41. Lu WD, Wang QN, He L et al (2018) Copper Supported on Hybrid C@ SiO2 Hollow Submicron Spheres as Active Ethanol Dehydrogenation Catalyst. ChemNanoMat. 4(5):505–509

    Article  CAS  Google Scholar 

  42. Chang F-W, Kuo W-Y, Lee K-C (2003) Dehydrogenation of ethanol over copper catalysts on rice husk ash prepared by incipient wetness impregnation. Appl Catal A 246(2):253–264

    Article  CAS  Google Scholar 

  43. Zhu Y-Y, Wang S-R, Zhu L-J et al (2010) The influence of copper particle dispersion in Cu/SiO 2 catalysts on the hydrogenation synthesis of ethylene glycol. Catal Lett 135(3–4):275–281

    Article  CAS  Google Scholar 

  44. Di W, Cheng J, Tian S et al (2016) Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol. Appl Catal A 510:244–259

    Article  CAS  Google Scholar 

  45. Khan TS, Jalid F, Haider MA (2018) First-principle microkinetic modeling of ethanol dehydrogenation on metal catalyst surfaces in non-oxidative environment: design of bimetallic alloys. Top Catal 61(18–19):1820–1831

    Article  CAS  Google Scholar 

  46. Ponomareva EA, Krasnikova IV, Egorova EV et al (2017) Ethanol dehydrogenation over copper supported on carbon macrofibers. Mendeleev Commun 27(2):210–212

    Article  CAS  Google Scholar 

  47. Wang Z-T, Hoyt RA, El-Soda M et al (2017) Dry Dehydrogenation of Ethanol on Pt–Cu Single Atom Alloys. Top Catal. https://doi.org/10.1007/s11244-017-0856-3

    Article  Google Scholar 

  48. Freitas IC, Gallo JMR, Bueno JMC et al (2016) The Effect of Ag in the Cu/ZrO 2 Performance for the Ethanol Conversion. Top Catal 59(2–4):357–365

    Article  CAS  Google Scholar 

  49. Bond GC, Namijo SN, Wakeman JS (1991) Thermal analysis of catalyst precursors: Part 2. Influence of support and metal precursor on the reducibility of copper catalysts. J Mol Catal 64(3):305–319

    Article  CAS  Google Scholar 

  50. Robertson S, McNicol B, De Baas J et al (1975) Determination of reducibility and identification of alloying in copper-nickel-on-silica catalysts by temperature-programmed reduction. J Catal 37(3):424–431

    Article  CAS  Google Scholar 

  51. Huang Z, Liu H, Cui F et al (2014) Effects of the precipitation agents and rare earth additives on the structure and catalytic performance in glycerol hydrogenolysis of Cu/SiO2 catalysts prepared by precipitation-gel method. Catal Today 234:223–232

    Article  CAS  Google Scholar 

  52. Roselin LS, Chiu H-W (2018) Production of hydrogen by oxidative steam reforming of methanol over Cu/SiO2 catalysts. Journal of Saudi Chemical Society. 22(6):692–704

    Article  CAS  Google Scholar 

  53. Huang Z, Cui F, Xue J et al (2012) Cu/SiO2 catalysts prepared by hom-and heterogeneous deposition–precipitation methods: Texture, structure, and catalytic performance in the hydrogenolysis of glycerol to 1, 2-propanediol. Catal Today 183(1):42–51

    Article  CAS  Google Scholar 

  54. Cesar DV, Peréz CA, Salim VMM et al (1999) Stability and selectivity of bimetallic Cu–Co/SiO2 catalysts for cyclohexanol dehydrogenation. Appl Catal A 176(2):205–212

    Article  CAS  Google Scholar 

  55. Wei X, Wang A-Q, Yang X-F et al (2012) Synthesis of Pt-Cu/SiO2 catalysts with different structures and their application in hydrodechlorination of 1, 2-dichloroethane. Appl Catal B 121:105–114

    Article  CAS  Google Scholar 

  56. Arbeláez O, Reina T, Ivanova S et al (2015) Mono and bimetallic Cu-Ni structured catalysts for the water gas shift reaction. Appl Catal A 497:1–9

    Article  CAS  Google Scholar 

  57. Popa T, Zhang Y, Jin E et al (2015) An environmentally benign and low-cost approach to synthesis of thermally stable industrial catalyst Cu/SiO2 for the hydrogenation of dimethyl oxalate to ethylene glycol. Appl Catal A 505:52–61

    Article  CAS  Google Scholar 

  58. Sato AG, Volanti DP, de Freitas IC et al (2012) Site-selective ethanol conversion over supported copper catalysts. Catal Commun 26:122–126

    Article  CAS  Google Scholar 

  59. Poulston S, Parlett P, Stone P et al (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal 24(12):811–820

    Article  CAS  Google Scholar 

  60. Biesinger MC (2017) Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal 49(13):1325–1334

    Article  CAS  Google Scholar 

  61. Khromova SA, Smirnov AA, Bulavchenko OA et al (2014) Anisole hydrodeoxygenation over Ni–Cu bimetallic catalysts: The effect of Ni/Cu ratio on selectivity. Appl Catal A 470:261–270

    Article  CAS  Google Scholar 

  62. Wang H-K, Yi C-Y, Tian L et al (2012) Ag-Cu bimetallic nanoparticles prepared by microemulsion method as catalyst for epoxidation of styrene. Journal of nanomaterials. https://doi.org/10.1155/2012/453915

    Article  Google Scholar 

  63. Muñoz-Rojas D, Subías G, Fraxedas J et al (2005) Electronic structure of Ag2Cu2O4. Evidence of oxidized silver and copper and internal charge delocalization. J Phys Chem B 109(13):6193–6203

    Article  PubMed  CAS  Google Scholar 

  64. Sen P, Hegde M, Rao C (1982) Surface oxidation of cadmium, indium, tin and antimony by photoelectron and Auger spectroscopy. Applications of Surface Science. 10(1):63–74

    Article  CAS  Google Scholar 

  65. Xia Z, Liu H, Lu H et al (2017) Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation. Appl Surf Sci 422:905–912

    Article  CAS  Google Scholar 

  66. Weihua W, Xuelin T, Kai C et al (2006) Synthesis and characterization of Pt–Cu bimetallic alloy nanoparticles by reverse micelles method. Colloids Surf, A 273(1–3):35–42

    Article  CAS  Google Scholar 

  67. Regalbuto J, Fleisch T, Wolf E (1987) An integrated study of Pt/WO3/SiO2 catalysts for the NO-CO reaction: I. Catalyst characterization by XRD, chemisorption, and XPS. J Catal 107(1):114–128

    Article  CAS  Google Scholar 

  68. Toshima N, Wang Y (1994) Preparation and catalysis of novel colloidal dispersions of copper/noble metal bimetallic clusters. Langmuir 10(12):4574–4580

    Article  CAS  Google Scholar 

  69. Van Attekum PTM, Trooster J (1979) An X-ray photoelectron spectroscopy of PdSb, PtBi and AuSn. J Phys F: Met Phys 9(11):2287

    Article  Google Scholar 

  70. Ghavidel MZ, Videla AHM, Specchia S et al (2017) The relationship between the structure and ethanol oxidation activity of Pt-Cu/C alloy catalysts. Electrochim Acta 230:58–72

    Article  CAS  Google Scholar 

  71. Boualouache A, Boucenna A, Otmanine G (2019) Interaction of intermediates with transition metal surfaces in the dehydrogenation of ethanol to ethyl acetate: A theoretical investigation. Prog React Kinet Mech 44(1):74–91

    Article  CAS  Google Scholar 

  72. Garbarino G, Riani P, García MV et al (2019) A study of ethanol dehydrogenation to acetaldehyde over copper/zinc aluminate catalysts. Catal Today 354:167–175

    Article  CAS  Google Scholar 

  73. Garbarino G, Vijayakumar RPP, Riani P et al (2018) Ethanol and diethyl ether catalytic conversion over commercial alumina and lanthanum-doped alumina: reaction paths, catalyst structure and coking. Appl Catal B 236:490–500

    Article  CAS  Google Scholar 

  74. Zhang M, Li G, Jiang H et al (2011) Investigation on process mechanism on Cu–Cr catalysts for ethanol dehydrogenation to ethyl acetate. Catal Lett 141(8):1104–1110

    Article  CAS  Google Scholar 

  75. Witzke M, Dietrich P, Ibrahim M et al (2017) Spectroscopic evidence for origins of size and support effects on selectivity of Cu nanoparticle dehydrogenation catalysts. Chem Commun 53(3):597–600

    Article  CAS  Google Scholar 

  76. Giannakakis G, Trimpalis A, Shan J et al (2018) NiAu single atom alloys for the non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Top Catal 61(5–6):475–486

    Article  CAS  Google Scholar 

  77. Quesada J, Faba L, Díaz E et al (2018) Copper-Basic Sites Synergic Effect on the Ethanol Dehydrogenation and Condensation Reactions. ChemCatChem. 10(16):3583–3592

    Article  CAS  Google Scholar 

  78. Ek S, Root A, Peussa M et al (2001) Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1H MAS NMR results. Thermochim Acta 379(1–2):201–212

    Article  CAS  Google Scholar 

  79. Moodley D, Van de Loosdrecht J, Saib A et al (2009) Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions. Appl Catal A 354(1–2):102–110

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Chevreul Institute (FR 2638), Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, Région Hauts-de-France and FEDER. Mr. Mohamed Guenoun, Hamza Boukhlouf, Jérémy Faye (TEAMCAT Solution company), Olivier Gardoll, Salem Cheknoun and Mrs. Anna Katiuce Fellenberg, Asma Zitouni and Soraya Zaid are warmly acknowledged for their support and assistance.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SA, AB and GO; Methodology: SA, DA and SH; Formal analysis and investigation: SA, AB and PS; Writing—original draft preparation: SA; Writing—review and editing: SA, AB, PS, MC and DA; Funding acquisition: SA; Resources: SA, MC and SH; Supervision & Validation: SA, MC and SH

Corresponding author

Correspondence to Samira Amokrane.

Ethics declarations

Conflict of interest

All contributing authors declare that they have no conflict of interest, no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 1709 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amokrane, S., Boualouache, A., Simon, P. et al. Effect of Adding Transition Metals to Copper on the Dehydrogenation Reaction of Ethanol. Catal Lett 151, 2864–2883 (2021). https://doi.org/10.1007/s10562-020-03517-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03517-0

Keywords

Navigation