Skip to main content
Log in

Recombinant Laccase Production Optimization in Pichia pastoris by Response Surface Methodology and Its Application in the Biodegradation of Octyl Phenol and 4-Tert-Octylphenol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The response surface methodology was used for the optimization of different submerged fermentation conditions for the production of recombinant laccase Lcc1 in Pichia pastoris KM71H. The initial screening of production parameters was performed using a Plackett–Burman design, and the variables with significant effects on laccase production were identified as follows: medium initial pH, methanol additive amount and liquid volume. These variables were selected for further optimization studies using a Box-Behnken design. The results indicated that the optimum fermentation conditions were as follows: medium optimal initial pH value of 7.01, methanol additive amount of 0.63% (v/v) per 24 h and liquid volume of 19.50% (v/v). These conditions provided the highest laccase enzyme activity of 12,491 U/L, resulting in a 3-fold increase in the production of recombinant laccase. Using industrial basic salt as culture medium, the maximum enzyme activity of Lcc1 was 22,594 U/L after high-density fermentation, which was 1.8-fold increase by shake flask optimization. Furthermore, partially purified laccase was used for the degradation of the octyl phenol and 4-tert-octylphenol, which displayed excellent degradation capacity. After 24 h, the degradation rate of 200 mg/L of 4-tert-octylphenol at 40 °C, pH 4.5 using 50 mM tartaric acid buffer with 1500 U/L purified laccase enzyme in L/A (laccase/ABTS) system was 97.2%. For octyl phenol, the degradation rate was 93.1%. All of the results suggested that the laccase Lcc1 significantly reduced or eliminated the toxicity of octyl phenol and 4-tert-octylphenol, which may be suitable for typical phenolic pollutants in the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang X, Wu Y, Zhang Y et al (2020) Front Microbiol 11:241

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu M, Dong H, Wang M et al (2020) J Genet 99:23

    Article  CAS  PubMed  Google Scholar 

  3. Zhang CY, You SP, Liu YD et al (2020) Biores. Technol. 305:123085

    Article  CAS  Google Scholar 

  4. Zhou WT, Zhang WX, Cai YP (2020) Chem. Eng. J. 403:126272

    Article  Google Scholar 

  5. Jiang YP, Cai JL, Pei JJ et al (2021). ACS Omega. https://doi.org/10.1021/acsomega.1c00370

    Article  PubMed  PubMed Central  Google Scholar 

  6. Christopher LP, Yao B, Ji Y (2014). Front Energ Res. https://doi.org/10.3389/fenrg.2014.00012

    Article  Google Scholar 

  7. Aracri E, Fillat A, Colom JF et al (2010) Biores Technol 101:8211–8216

    Article  CAS  Google Scholar 

  8. Aza P, Salas FD, Molpeceres G et al (2021) Int J Mol Sci 22:1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Q, Pei JJ, Zhao LG et al (2014) Appl Biochem Microbiol 50:140–147

    Article  CAS  Google Scholar 

  10. Bezerra MA, Santelli RE, Oliveira EP et al (2008) Talanta 76:965–977

    Article  CAS  PubMed  Google Scholar 

  11. Amin M, Bhatti HN, Sadaf S, et al (2021) Cataly Lett 2

  12. Bartley ML, Boeing WJ, Daniel D et al (2016) J Appl Phycol 28:15–24

    Article  CAS  Google Scholar 

  13. Unuofin JO, Okoh AI, Nwodo UU (2019) J Environ Manage 231:222–231

    Article  CAS  PubMed  Google Scholar 

  14. Jegatheesan M, Eyini M (2015) Arab J Sci Eng 40:1809–1818

    Article  CAS  Google Scholar 

  15. Diwaniyan S, Sharma KK, Kuhad RC (2012) J Basic Microbiol 52:397–407

    Article  CAS  PubMed  Google Scholar 

  16. Knapczyk-Stwora K, Nynca A, Ciereszko RE et al (2020) Theriogenology 153:102–111

    Article  CAS  PubMed  Google Scholar 

  17. Ffwa B, Yan Z, Xyza B et al (2020) J Chromatography A 1635:461765

    Google Scholar 

  18. Jeannot R, Sabik H, Sauvard E et al (2002) J Chromatogr A 974:143–159

    Article  CAS  PubMed  Google Scholar 

  19. Tsuda T, Takino A, Kojima M et al (1999) J Chromatography B 723:273–279

    Article  CAS  Google Scholar 

  20. Zhang KW, Sai YE, Guang-Shui NA et al (2008) Chin J Analysis Lab 27:62–66

    CAS  Google Scholar 

  21. Wang H, Deng W, Shen M et al (2020) J Hazardous Mater 408:124775

    Article  Google Scholar 

  22. Maryskova M, Linhartova L, Novotny V et al (2021). Environ Sci Pollut Research. https://doi.org/10.1007/s11356-021-12910-0

    Article  Google Scholar 

  23. Li Q, Zhao DX, Liu SP et al (2014) J Nanjing Forestry Univ (Nat Sci Edtn) 38(3):93–97

    Google Scholar 

  24. Childs RE, Bardsley WG (1975) Biochem J 145:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  26. Burman JP, Plackett RL (1946) Biometals 33:305–325

    Google Scholar 

  27. Box G, Behnken DW (1960) Technometrics 2:455–475

    Article  Google Scholar 

  28. Kececioglu D, Lamarre G (1978) Nucl Eng Des 50:149–162

    Article  Google Scholar 

  29. El-Naggar EA (2019).

  30. Kumari A, Mahapatra P, Banerjee R (2009) Braz Arch Biol Technol 52:1349–1356

    Article  CAS  Google Scholar 

  31. Xia J, Wang Q, Luo Q et al (2019) Process Biochem 78:33–41

    Article  CAS  Google Scholar 

  32. Vicente AI, Via-Gonzalez J, Santos-Moriano P et al (2016) J Mol Catal B Enzymatic 134:323–330

    Article  CAS  Google Scholar 

  33. Yasmina M, Zhou S, Cusano AM et al (2014) J Biosci Bioeng 117(1):25–27

    Article  Google Scholar 

  34. Danilo R, Chiara CM, Maurizio R et al (2010) FEMS Yeast Res 6:892–902

    Google Scholar 

  35. Bailey MJ, Adamitsch B, Rautio J et al (2007) Enzyme Microb Technol 41:484–491

    Article  CAS  Google Scholar 

  36. Liang X, Hua DL, Zhao YX et al (2020) BioResources 15:9

    Google Scholar 

  37. Xie HF, Li Q, Wang MM et al (2013) J Microbiol Biotechnol 23(6):864–871

    Article  CAS  PubMed  Google Scholar 

  38. Hilgers RJ, Vincken JP, Gruppen H et al (2018) Acs Sust Chem Eng 6:2037–2046

    Article  CAS  Google Scholar 

  39. D ‘Acunzo F, Galli C, Masci B (2010) Febs J 269:5330–5335

    Google Scholar 

  40. Wells A, Teria M, Eve T (2006) Biochem Soc Trans 34:304–308

    Article  CAS  PubMed  Google Scholar 

  41. Habimana P, Gao J, Mwizerwa JP et al (2021). ACS Omega. https://doi.org/10.1021/acsomega.0c05081

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao J, Zeng SQ, Xia Y et al (2018) J Biosci Bioeng 125(4):371–376

    Article  CAS  PubMed  Google Scholar 

  43. Xia TT, Feng M, Liu CL, et al. Eng Life Sci 1–8 (2021).

  44. Qiu X, Wang Y, Xue Y et al (2019) Chem Eng J 391:123564

    Article  Google Scholar 

  45. Gu Y, Xue P, Shi K (2020) J Porous Mater 27:73–82

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Advanced Forestry Science and Technology Project Imported by State Forestry Administration (Grant No. 2011-4-15, 2010-4-19).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions were as follows: Qi Li, Changsheng Chai, and Linguo Zhao conceived and designed the experiments; Qi Li performed all the experiments and analyzed the data; Yitong Du and Junli Cai helped to perform the experiments; Qi Li wrote the paper. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Linguo Zhao.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Chai, C., Du, Y. et al. Recombinant Laccase Production Optimization in Pichia pastoris by Response Surface Methodology and Its Application in the Biodegradation of Octyl Phenol and 4-Tert-Octylphenol. Catal Lett 152, 1086–1099 (2022). https://doi.org/10.1007/s10562-021-03682-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03682-w

Keywords

Navigation