Skip to main content
Log in

Magnesium Pyrophosphate-Catalyzed Epoxidation of 1-Octene with Aqueous Hydrogen Peroxide

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The epoxidation of terminal olefins (e.g., 1-octene) presents an enormous challenge owing to their electron-deficient nature, whereas the vicinal diols that are derived from epoxides are highly desirable as fine chemicals. We report the facile preparation of magnesium pyrophosphate via the thermal decomposition of commercially available newberyite and the first use of magnesium pyrophosphate as a solid catalyst for terminal olefin epoxidation. The as-synthesized magnesium pyrophosphate was characterized by XRD, FTIR, SEM–EDS, and CO2-TPD techniques. The CO2-TPD results proved that the medium base was dominant in magnesium pyrophosphate. Magnesium pyrophosphate exhibited an effective catalytic activity in the liquid-phase epoxidation of 1-octene with a 94.2% selectivity of epoxide using aqueous hydrogen peroxide as oxidant in the presence of acetonitrile solvent. The influences of various reaction parameters, including solvent, temperature, H2O2 to 1-octene molar ratio, amount of magnesium pyrophosphate, reaction time, and solvent amount were investigated. According to the reaction mechanism, the perhydroxyl ion that originated from H2O2 heterocracking formed in the presence of magnesium pyrophosphate and reacted with acetonitrile to generate active intermediate peroxycarboximidic acid. The epoxide and amide formed when active oxygen was transferred from peroxycarboximidic acid to the olefin. Therefore, magnesium pyrophosphate was an appropriate catalyst for 1-octene epoxidation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. Burgess IF, Lee PN, Kay K, Jones R, Brunton ER (2012) PLoS ONE 7:35419

    Article  Google Scholar 

  2. Suenaga EN, Kunio (2008) JP 2008088063

  3. Sakaguchi SK, Koji (2013) JP 2013253157

  4. Tabuchi Y (2014) JP 2014091716

  5. Suenaga EY, Yasuhiro (2017) JP 2017145241

  6. Wu XW, Li BD (2014) Chin Chem Lett 25:459–462

    Article  CAS  Google Scholar 

  7. Parulkar A, Spanos AP, Deshpande N, Brunelli NA (2019) Appl Catal A 577:28–34

    Article  CAS  Google Scholar 

  8. Swern D, Billen GN, Scanlan JT (1946) J Am Chem Soc 68:1504–1507

    Article  PubMed  CAS  Google Scholar 

  9. Garcia-Bosch I, Company A, Fontrodona X, Ribas X, Costas M (2008) Org Lett 10:2095–2098

    Article  PubMed  CAS  Google Scholar 

  10. Bagherzadeh M, Zare M, Salemnoush T, Özkar S, Akbayrak S (2014) Appl Catal A 475:55–62

    Article  CAS  Google Scholar 

  11. Kang YB, Gade LH (2012) J Org Chem 77:1610–1615

    Article  PubMed  CAS  Google Scholar 

  12. Leng Y, Zhao J, Jiang P, Wang J (2014) ACS Appl Mater Interfaces 6:5947–5954

    Article  PubMed  CAS  Google Scholar 

  13. Martinez RI, Herron JT, Huie RE (1981) J Am Chem Soc 103:3807–3820

    Article  CAS  Google Scholar 

  14. Nishiyama Y, Nakagawa Y, Mizuno N (2001) Angew Chem 113:3751–3753

    Article  Google Scholar 

  15. Rezaeifard A, Haddad R, Jafarpour M, Hakimi M (2013) J Am Chem Soc 135:10036–10039

    Article  PubMed  CAS  Google Scholar 

  16. Chen L, Yang Y, Guo Z, Jiang D (2011) Adv Mater 23:3149–3154

    Article  PubMed  CAS  Google Scholar 

  17. Kamata K, Yonehara K, Sumida Y, Hirata K, Nojima S, Mizuno N (2011) Angew Chem 123:12268–12272

    Article  Google Scholar 

  18. Gharah N, Chakraborty S, Mukherjee AK, Bhattacharyya R (2004) Chem Commun 22:2630–2632

    Article  Google Scholar 

  19. Dong JJ, Saisaha P, Meinds TG, Alsters PL, Ijpeij EG, van Summeren RP, Mao B, Fañanás-Mastral M, de Boer JWHR (2012) ACS Catal 2:1087–1096

    Article  CAS  Google Scholar 

  20. Berkessel A, Guenther T, Wang Q, Neudörfl JM (2013) Angew Chem Int Ed 52:8467–8471

    Article  CAS  Google Scholar 

  21. Cordeiro PJ, Tilley TD (2011) ACS Catal 1:455–467

    Article  CAS  Google Scholar 

  22. Miao C, Wang B, Wang Y, Xia C, Lee YM, Nam W, Sun W (2016) J Am Chem Soc 138:936–943

    Article  PubMed  CAS  Google Scholar 

  23. Venturello C, AlneriRicci EM (1983) J Org Chem 48:3831–3833

    Article  CAS  Google Scholar 

  24. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, HikichiMizuno SN (2003) Science 300:964–966

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi E, Kamata K, Kikukawa Y, Sato S, Suzuki K, YamaguchiMizuno KN (2015) Catal Sci Technol 5:4778–4789

    Article  CAS  Google Scholar 

  26. Lambert A, Plucinski P, Kozhevnikov IV (2003) Chem Commun 6:714–715

    Article  Google Scholar 

  27. Na K, Jo C, Kim J, Ahn WS, Ryoo R (2011) ACS Catal 1:901–907

    Article  CAS  Google Scholar 

  28. Sanz R, Serrano D, Pizarro P, Moreno I (2011) Chem Eng J 171:1428–1438

    Article  CAS  Google Scholar 

  29. Blanc AC, Valle S, Renard G, Brunel D, Macquarrie DJ, Quinn CR (2000) Green Chem 2:283–288

    Article  CAS  Google Scholar 

  30. Uguina MAA, Delgado JA, Carretero J (2009) Ind Eng Chem Res 48:10217–10221

    Article  CAS  Google Scholar 

  31. Hara T, Kurihara J, Ichikuni N, Shimazu S (2014) Catal Sci Technol 5:578–583

    Article  Google Scholar 

  32. Ivanchikova ID, Evtushok VY, Zalomaeva OV, Kolokolov DI, StepanovKholdeeva AGOA (2020) Dalton Trans 49:12546–12549

    Article  PubMed  CAS  Google Scholar 

  33. Kantam ML, Choudary BM, Reddy CV, Rao KK, Kantam ML, Choudary BM, Rao KK, Figueras F (1998) Chem Commun 9:1033–1034

    Article  Google Scholar 

  34. Tanabe K, Hölderich WF (1999) Appl Catal A 181:399–434

    Article  CAS  Google Scholar 

  35. Ueno S, Yoshida K, Ebitani K, Kaneda K (1998) Chem Commun 3:295–296

    Article  Google Scholar 

  36. Yamaguchi K, Ebitani K, Kaneda K (1999) J Org Chem 64:2966–2968

    Article  PubMed  CAS  Google Scholar 

  37. Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K (2000) J Org Chem 65:6897–6903

    Article  PubMed  CAS  Google Scholar 

  38. Pillai UR, SahleDemessie E (2004) Appl Catal A 261:69–76

    Article  CAS  Google Scholar 

  39. Aramendia MAA, Borau V, Jimenez C, Marinas JMA, Romero FJ, Ruiz J (1998) J Colloid Interface Sci 202:456–461

    Article  CAS  Google Scholar 

  40. Sronsri C, Sittipol W, Kongpop U (2020) Chem Eng Sci 226:115884

    Article  CAS  Google Scholar 

  41. Huang X, Li N, Wang J, Liu D, Xu J, Zhang Z, Zhong M (2019) ACS Appl Mater Interfaces 12:2252–2258

    Article  PubMed  Google Scholar 

  42. Gong H, Lin L, Zhao X, Li H, Li D, Xu Z, Chen M, Huang R, Hou Z (2019) Appl Catal A 574:1–9

    Article  CAS  Google Scholar 

  43. Yu H, Young J, Wu H, Zhang W, Rondinelli JM, Halasyamani PS (2017) Chem Mater 29:1845–1855

    Article  CAS  Google Scholar 

  44. Li Y, Liang F, Song H, Liu W, Lin Z, Zhang G, Wu Y (2019) Inorg Chem 58:6597–6600

    Article  PubMed  CAS  Google Scholar 

  45. Mohammad F, ArfinAl-Lohedan THA (2017) Mater Sci Eng, C 71:735–743

    Article  CAS  Google Scholar 

  46. Florea M, Marin R, Pălăşanu F, Neaţu F, Pârvulescu V (2015) Catal Today 254:29–35

    Article  CAS  Google Scholar 

  47. Wai PT, Jiang P, Shen Y, Zhang P, Gu Q (2020) Appl Catal A 596:117537

    Article  CAS  Google Scholar 

  48. Wang L, Zhou Y, Mi Z (2007) J Chem Technol Biotechnol 82:414–420

    Article  CAS  Google Scholar 

  49. Pawar RY, Adhyapak PV, Pardeshi SK (2014) Appl Catal A 478:129–137

    Article  CAS  Google Scholar 

  50. Lueangchaichaweng W, Li L, Wang QY, Su BL, Aprile C, Pescarmona C (2013) Catal Today 203:66–75

    Article  CAS  Google Scholar 

  51. Jin H, Jiang N, Oh SM, Park SE (2009) Top Catal 52:169–177

    Article  CAS  Google Scholar 

  52. Ivanchikova ID, Maksimchuk NV, Skobelev IY, Kaichev VV, Kholdeeva OA (2015) J Catal 332:138–148

    Article  CAS  Google Scholar 

  53. Lueangchaichaweng W, Singh B, Mandelli D, Carvalho WA, Fiorilli S, Pescarmona PP (2019) Appl Catal A 571:180–187

    Article  CAS  Google Scholar 

  54. Shen Y, Jiang P, Wang Y, Bian G, Wai PT, Dong Y (2018) J Solid State Chem 264:156–164

    Article  CAS  Google Scholar 

  55. Payne GB, Williams PH (1961) J Org Chem 26:651–659

    Article  CAS  Google Scholar 

  56. Hiyoshi N (2012) Appl Catal A 419:164–169

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the generous financial support from the Young Scientists Fund of the National Natural Science Foundation of China (Grant Number 21908154), the National Natural Science Foundation of China (Grant Number 22078219) and Ten Thousand Talents Program: Millions of Leading Engineering Talents.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Li or Jinxiang Dong.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, X. & Dong, J. Magnesium Pyrophosphate-Catalyzed Epoxidation of 1-Octene with Aqueous Hydrogen Peroxide. Catal Lett 152, 162–171 (2022). https://doi.org/10.1007/s10562-021-03614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03614-8

Keywords

Navigation