Skip to main content
Log in

Surface Engineering of CeO2 Catalysts: Differences Between Solid Solution Based and Interfacially Designed Ce1−xMxO2 and MO/CeO2 (M = Zn, Mn) in CO2 Hydrogenation Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Zn- and Mn-doped Cerium-oxide based catalyst textured as a solid solutional as well as interfacial form was compared in CO2 hydrogenation reaction to understand the role of texture as well as dopant type. Ce0.9M0.1O2 (M = Zn, Mn) solid solution was prepared by hydrothermal method and CeO2 supported 10 mol% metal oxide (Metal = Zn, Mn) were prepared by wet impregnation method, where the catalysts were characterized by XRD, N2 adsorption/desorption isotherm, TEM, Raman spectra, HAADF-STEM and H2-TPR. During the CO2 activation reaction, CO was the major product with minor amounts of methane, ethane, methanol and ethanol. In the case of the Zn-doped CeO2 catalyst, the presence of Zn improved catalytic activity in both solid solutional and interfacial form due to the synergetic effect of Zn-Ce-based oxide. However, for MnOx/CeO2 catalysts, the CO2 consumption rate significantly decreased for 10 mol% MnOx/CeO2, Ce0.9Mn0.1O2 and Mn3O4, where the MnOx addition inhibits the reduction of CeO2. In the case of the pure CeO2, DRIFTS spectra show that formate intermediate formed by reaction between activated CO2 and OH transformed into methoxy species through formaldehyde intermediates, which leads to the formation of small amount of methanol and ethanol.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang W-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E (2015) CO2 hydrogenation to formate and methanol as an alternative to photo-and electrochemical CO2 Reduction. Chem Rev 115:12936–12973

    Article  CAS  PubMed  Google Scholar 

  2. Klankermayer J, Wesselbaum S, Beydoun K, Leitner W (2016) Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry. Angew Chem Int Ed 55:7296–7343

    Article  CAS  Google Scholar 

  3. Sápi A, Halasi Gy, Kiss J, Dobó DG, Juhász KL, Kolcsár VJ, Ferenc Z, Vári G, Matolin V, Erdőhelyi A (2018) In situ drifts and Nap-Xps exploration of the complexity of Co2 hydrogenation over size-controlled Pt nanoparticles supported on mesoporous NiO. J P Chem C 122:5553–5565

    Article  CAS  Google Scholar 

  4. László B, Baán K, Varga E, Oszkó A, Erdőhelyi A, Kónya Z, Kiss J (2016) Photo-induced reactions in the Co2-methane system on titanate nanotubes modified with Au and Rh nanoparticles. Appl Catal B 199:473–484

    Article  CAS  Google Scholar 

  5. Sápi A, Halasi G, Grósz A, Kiss J, Kéri A, Ballai G, Galbács G, Kukovecz Á, Kónya Z (2019) Designed Pt promoted 3d mesoporous CO3O4 catalyst in Co2 hydrogenation. J Nanosci Nanotechnol 19:436–441

    Article  PubMed  CAS  Google Scholar 

  6. Sápi A, Rajkumar T, Ábel M, Efremova A, Grósz A, Gyuris A, Ábrahámné KB, Szenti I, Kiss J, Varga T (2019) Noble-metal-free and Pt nanoparticles-loaded, mesoporous oxides as efficient catalysts for Co2 hydrogenation and dry reforming with methane. J CO2 Util 32:106–118

    Article  CAS  Google Scholar 

  7. Kiss J, Kukovecz Á, Kónya Z (2019) Beyond nanoparticles: the role of sub-nanosized metal species in heterogeneous catalysis. Catal Lett 149:1441–1454

    CAS  Google Scholar 

  8. Kattel S, Yan B, Chen JG, Liu P (2016) Co2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: importance of synergy between Pt and oxide support. J Catal 343:115–126

    Article  CAS  Google Scholar 

  9. Wang X, Shi H, Kwak JH, Szanyi J (2015) Mechanism of Co2 hydrogenation on Pd/Al2O3 catalysts: kinetics and transient drifts-Ms studies. ACS Catal 5:6337–6349

    Article  CAS  Google Scholar 

  10. Rajkumar T, Sápi A, Ábel M, Farkas F, Gómez-Pérez JF, Kukovecz Á, Kónya Z (2019) Ni–Zn–Al-based oxide/spinel nanostructures for high performance, methane-selective Co2 hydrogenation reactions. Catal Lett. https://doi.org/10.1007/s10562-019-03051-8

    Article  Google Scholar 

  11. Ashok J, Pati S, Hongmanorom P, Tianxi Z, Junmei C, Kawi S (2020) A review of recent catalyst advances in Co2 methanation processes. Catal Today 356:471–489

    Article  CAS  Google Scholar 

  12. Zhang X, Zhu X, Lin L, Yao S, Zhang M, Liu X, Wang X, Li Y-W, Shi C, Ma D (2016) Highly dispersed copper over Β-Mo2c as an efficient and stable catalyst for the reverse water gas shift (Rwgs) reaction. ACS Catal 7:912–918

    Article  CAS  Google Scholar 

  13. Bobadilla LF, Santos JL, Ivanova S, Odriozola JA, Urakawa A (2018) Unravelling the role of oxygen vacancies in the mechanism of the reverse water-gas shift reaction by operando drifts and ultraviolet-visible spectroscopy. ACS Catal 8:7455–7467

    Article  CAS  Google Scholar 

  14. Carrasquillo-Flores R, Ro I, Kumbhalkar MD, Burt S, Carrero CA, Alba-Rubio AC, Miller JT, Hermans I, Huber GW, Dumesic JA (2015) Reverse water-gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J Am Chem Soc 137:10317–10325

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell RW, Lloyd DC, van de Water LG, Ellis PR, Metcalfe KA, Sibbald C, Davies LH, Enache DI, Kelly GJ, Boyes ED (2018) Effect of pretreatment method on the nanostructure and performance of supported co catalysts in Fischer-Tropsch synthesis. ACS Catal 8:8816–8829

    Article  CAS  Google Scholar 

  16. Liu C, He Y, Wei L, Zhang Y, Zhao Y, Hong J, Chen S, Wang L, Li J (2018) Hydrothermal carbon-coated Tio2 as support for co-based catalyst in Fischer-Tropsch synthesis. ACS Catal 8:1591–1600

    Article  CAS  Google Scholar 

  17. Choi S, Sang B-I, Hong J, Yoon KJ, Son J-W, Lee J-H, Kim B-K, Kim H (2017) Catalytic behavior of metal catalysts in high-temperature Rwgs reaction: in-situ Ft-Ir experiments and first-principles calculations. Sci Rep 7:41207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang L, Liu H (2018) Mesoporous Co-Ceo2 catalyst prepared by colloidal solution combustion method for reverse water-gas shift reaction. Catal Today. https://doi.org/10.1016/j.cattod.2018.04.015

    Article  Google Scholar 

  19. Yang L, Pastor-Pérez L, Gu S, Sepúlveda-Escribano A, Reina T (2018) Highly efficient Ni/Ceo2-Al2o3 catalysts for Co2 upgrading via reverse water-gas shift: effect of selected transition metal promoters. Appl Catal B 232:464–471

    Article  CAS  Google Scholar 

  20. Lin L, Yao S, Liu Z, Zhang F, Na L, Vovchok D, Martinez-Arias A, Castaneda R, Lin JY, Senanayake SD (2018) In-situ characterization of Cu/Ceo2 nanocatalysts during Co2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.8b03596

    Article  Google Scholar 

  21. Mutschler R, Moioli E, Luo W, Gallandat N, Züttel A (2018) Co2 hydrogenation reaction over pristine Fe Co, Ni, Cu and Al2o3 supported Ru: comparison and determination of the activation energies. J Catal 366:139–149

    Article  CAS  Google Scholar 

  22. Chen X, Su X, Duan H, Liang B, Huang Y, Zhang T (2017) Catalytic performance of the Pt/Tio2 catalysts in reverse water gas shift reaction: controlled product selectivity and a mechanism study. Catal Today 281:312–318

    Article  CAS  Google Scholar 

  23. Sun F-M, Yan C-F, Wang Z-D, Guo C-Q, Huang S-L (2015) Ni/Ce–Zr–O catalyst for high Co2 conversion during reverse water gas shift reaction (Rwgs). Int J Hydrog Energy 40:15985–15993

    Article  CAS  Google Scholar 

  24. Yan Y, Wang Q, Jiang C, Yao Y, Lu D, Zheng J, Dai Y, Wang H, Yang Y (2018) Ru/Al2o3 catalyzed Co2 hydrogenation: oxygen-exchange on metal-support interfaces. J Catal 367:194–205

    Article  CAS  Google Scholar 

  25. Ronda-Lloret M, Rico-Francés S, Sepúlveda-Escribano A, Ramos-Fernandez EV (2018) Cuox/Ceo2 catalyst derived from metal organic framework for reverse water-gas shift reaction. Appl Catal A 562:28–36

    Article  CAS  Google Scholar 

  26. Hare BJ, Maiti D, Daza YA, Bhethanabotla VR, Kuhn JN (2018) Enhanced Co2 conversion to co by silica-supported perovskite oxides at low temperatures. ACS Catal 8:3021–3029

    Article  CAS  Google Scholar 

  27. Kyriakou V, Vourros A, Garagounis I, Carabineiro S, Maldonado-Hódar F, Marnellos G, Konsolakis M (2017) Highly active and stable Tio2-supported Au nanoparticles for Co2 reduction. Catal Commun 98:52–56

    Article  CAS  Google Scholar 

  28. Galván CÁ, Schumann J, Behrens M, Fierro JLG, Schlögl R, Frei E (2016) Reverse water-gas shift reaction at the Cu/Zno interface: influence of the Cu/Zn ratio on structure-activity correlations. Appl Catal B 195:104–111

    Article  CAS  Google Scholar 

  29. Zhong S-L, Zhang L-F, Wang L, Huang W-X, Fan C-M, Xu A-W (2012) Uniform and porous Ce1–XZnXO2−Δ solid solution nanodisks: preparation and their Co oxidation activity. J Phys Chem C 116:13127–13132

    Article  CAS  Google Scholar 

  30. Song W, Chen L, Deng J, Jing M, Zheng H, Liu J, Zhao Z (2018) Combination of density functional theory and microkinetic study to the Mn-doped Ceo2 catalysts for Co oxidation: a case study to understand the doping metal content. J Phys Chem C 122:25290–25300

    Article  CAS  Google Scholar 

  31. Murugan B, Ramaswamy A, Srinivas D, Gopinath C, Ramaswamy V (2005) Nature of manganese species in Ce1-XMnXO2-Δ solid solutions synthesized by the solution combustion route. Chem Mater 17:3983–3993

    Article  CAS  Google Scholar 

  32. Petkovich ND, Rudisill SG, Venstrom LJ, Boman DB, Davidson JH, Stein A (2011) Control of heterogeneity in nanostructured Ce1–XZrXO2 binary oxides for enhanced thermal stability and water splitting activity. J Phys Chem C 115:21022–21033

    Article  CAS  Google Scholar 

  33. Baidya T, Gupta A, Deshpandey PA, Madras G, Hegde M (2009) high oxygen storage capacity and high rates of Co oxidation and no reduction catalytic properties of Ce1−XSnXO2 and Ce0.78Sn0.2Pd0.02O2-Δ. J Phys Chem C 113:4059–4068

    Article  CAS  Google Scholar 

  34. Baidya T, Gayen A, Hegde M, Ravishankar N, Dupont L (2006) Enhanced reducibility of Ce1-XTiXO2 compared to that of Ceo2 and higher redox catalytic activity of Ce1-X-YTiXPtYO2-Δ compared to that of Ce1-XPtXO2-Δ. J Phys Chem B 110:5262–5272

    Article  CAS  PubMed  Google Scholar 

  35. Delimaris D, Ioannides T (2009) Voc oxidation over Cuo–Ceo2 catalysts prepared by a combustion method. Appl Catal B 89:295–302

    Article  CAS  Google Scholar 

  36. Liu H, Zhao C, Wang L (2018) Mesoporous Ni–Ceo2 catalyst with enhanced selectivity and stability for reverse water-gas shift reaction. J Chem Eng Jpn 49:161–165

    Article  CAS  Google Scholar 

  37. Dai B, Zhou G, Ge S, Xie H, Jiao Z, Zhang G, Xiong K (2017) Co2 reverse water-gas shift reaction on mesoporous M-Ceo2 catalysts. Can J Chem Eng 95:634–642

    Article  CAS  Google Scholar 

  38. Park S-W, Joo O-S, Jung K-D, Kim H, Han S-H (2001) Development of Zno/Al2o3 catalyst for reverse-water-gas-shift reaction of camere (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process. Appl Catal A 211:81–90

    Article  CAS  Google Scholar 

  39. Goguet A, Meunier FC, Tibiletti D, Breen JP, Burch R (2004) Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/Ceo2 catalyst. J Phys Chem B 108:20240–20246

    Article  CAS  Google Scholar 

  40. Kim SS, Lee HH, Hong SC (2012) The effect of the morphological characteristics of Tio2 supports on the reverse water-gas shift reaction over Pt/Tio2 catalysts. Appl Catal B 119:100–108

    Google Scholar 

  41. García T et al (2019) Green synthesis of cavity-containing manganese oxides with superior catalytic performance in toluene oxidation. Appl Catal A. https://doi.org/10.1016/j.apcata.2019.06.005

    Article  Google Scholar 

  42. Deng H, Kang S, Ma J, Zhang C, He H (2018) Silver incorporated into cryptomelane-type manganese oxide boosts the catalytic oxidation of benzene. Appl Catal B 239:214–222

    Article  CAS  Google Scholar 

  43. Gorlin Y, Chung C-J, Nordlund D, Clemens BM, Jaramillo TF (2012) Mn3O4 supported on glassy carbon: an active non-precious metal catalyst for the oxygen reduction reaction. ACS Catal 2:2687–2694

    Article  CAS  Google Scholar 

  44. Ojha GP, Gautam J, Muthurasu A, Lee M, Dahal B, Mukhiya T, Lee JH, Tiwari AP, Chhetri K, Kim HY (2019) In-situ fabrication of manganese oxide nanorods decorated manganese oxide nanosheets as an efficient and durable catalyst for oxygen reduction reaction. Colloids Surf A 568:311–318

    Article  CAS  Google Scholar 

  45. Cao W, Wang Y, Zhuang Q, Wang L, Ni Y (2019) Developing an electrochemical sensor for the detection of tert-butylhydroquinone. Sens Actuators B 293:321–328

    Article  CAS  Google Scholar 

  46. Mohammad-Rezaei R, Soroodian S, Esmaeili G (2019) Manganese oxide nanoparticles electrodeposited on graphenized pencil lead electrode as a sensitive miniaturized Ph sensor. J Mater Sci: Mater Electron 30:1998–2005

    CAS  Google Scholar 

  47. Aziz SM, Yusoff N, Sahar M, Yaacob S, Mahraz ZAS (2019) Effect of annealing on the optical and magnetic properties of Mn3O4 nanoparticles embedded into Eu3+ doped borotellurite glasses. J Non-Cryst Solids 515:11–20

    Article  CAS  Google Scholar 

  48. Narayani L, Angadi VJ, Sukhdev A, Challa M, Matteppanavar S, Deepthi P, Kumar PM, Pasha M (2019) Mechanism of high temperature induced phase transformation and magnetic properties of Mn3O4 crystallites. J Magn Magn Mater 476:268–273

    Article  CAS  Google Scholar 

  49. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W (2006) Mnox–Ceo2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl Catal B 62:265–273

    Article  CAS  Google Scholar 

  50. Zhang G, Li Y, Hou Z, Xv J, Wang Q, Zhang Y (2018) Research on the synergistic doped effects and the catalysis properties of Cu2+ and Zn2+ Co-doped Ceo2 solid solutions. J Solid State Chem 264:148–155

    Article  CAS  Google Scholar 

  51. Xu B, Zhang Q, Yuan S, Zhang M, Ohno T (2015) Morphology control and characterization of broom-like porous Ceo2. Chem Eng J 260:126–132

    Article  CAS  Google Scholar 

  52. Huang J, Yang Y, Yang L, Bu Y, Xia T, Gu S, Yang H, Ye D, Xu W (2018) Fabrication of multifunctional silk fabrics via one step in-situ synthesis of Zno. Mater Lett. https://doi.org/10.1016/j.matlet.2018.11.035

    Article  Google Scholar 

  53. Wu M, Zhang Y, Szeto W, Pan W, Huang H, Leung DY (2019) Vacuum ultraviolet (Vuv)-based photocatalytic oxidation for toluene degradation over pure Ceo2. Chem Eng Sci 200:203–213

    Article  CAS  Google Scholar 

  54. Mousavi SM, Meshkani F, Rezaei M (2017) Preparation of mesoporous nanocrystalline 10% Ni/Ce1− XMnxO2 catalysts for dry reforming reaction. Int J Hydrog Energy 42:24776–24784

    Article  CAS  Google Scholar 

  55. Xing X, Cai Y, Chen N, Li Y, Deng D, Wang Y (2015) Synthesis of mixed Mn–Ce–Ox one dimensional nanostructures and their catalytic activity for Co oxidation. Ceram Int 41:4675–4682

    Article  CAS  Google Scholar 

  56. Liang C, Ma Z, Lin H, Ding L, Qiu J, Frandsen W, Su D (2009) Template preparation of nanoscale CeXFe1− XO2 solid solutions and their catalytic properties for ethanol steam reforming. J Mater Chem 19:1417–1424

    Article  CAS  Google Scholar 

  57. Parra MR, Pandey P, Siddiqui H, Sudhakar V, Krishnamoorthy K, Haque FZ (2019) Evolution of Zno nanostructures as hexagonal disk: implementation as photoanode material and efficiency enhancement in Al: Zno based dye sensitized solar cells. Appl Surf Sci 470:1130–1138

    Article  CAS  Google Scholar 

  58. Fazio B, Spadaro L, Trunfio G, Negro J, Arena F (2011) Raman scattering of MnOx–CeOx composite catalysts: structural aspects and laser-heating effects. J Raman Spectrosc 42:1583–1588

    Article  CAS  Google Scholar 

  59. Narayana BL, Mukri BD (2016) Mn ion substituted Ceo2 nano spheres for low temperature Co oxidation: the promoting effect of Mn ions. ChemistrySelect 1:3150–3158

    Article  CAS  Google Scholar 

  60. Kaya D, Singh D, Kincal S, Uner D (2019) Facilitating role of Pd for hydrogen, oxygen and water adsorption/desorption processes from bulk Ceo2 and CeO2/Γ-Al2O3. Catal Today 323:141–147

    Article  CAS  Google Scholar 

  61. Watanabe S, Ma X, Song C (2009) Characterization of structural and surface properties of nanocrystalline Tio2−Ceo2 mixed oxides by Xrd, Xps, Tpr, and Tpd. J Phys Chem C 113:14249–14257

    Article  CAS  Google Scholar 

  62. Liu M-H, Chen Y-W, Lin T-S, Mou C-Y (2018) Defective mesocrystal Zno-supported gold catalysts: facilitating Co oxidation via vacancy defects in Zno. ACS Catal. https://doi.org/10.1021/acscatal.8b01282

    Article  PubMed Central  PubMed  Google Scholar 

  63. Anil C, Madras G (2019) Catalytic behaviour of Mn2.94M0.06O4-Δ (M= Pt, Ru and Pd) catalysts for low temperature water gas shift (Wgs) and Co oxidation. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.04.117

    Article  Google Scholar 

  64. Huang J, Huang H, Jiang H, Liu L (2019) The promotional role of Nd on Mn/Tio2 catalyst for the low-temperature Nh3-Scr of Nox. Catal Today 332:49–58

    Article  CAS  Google Scholar 

  65. Solymosi F (1991) The bonding, structure and reactions of Co2 adsorbed on clean and promoted metal surfaces. J Mol Catal 65:337–358

    Article  CAS  Google Scholar 

  66. Kiss J, Révész K, Solymosi F (1988) Photoelectron spectroscop1c studies of the adsorption of Co2 on potassium-promoted Rh (111) surface. Surf Sci 207:36–54

    Article  CAS  Google Scholar 

  67. Freund H-J, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273

    Article  Google Scholar 

  68. Cheng Z, Lo CS (2016) Mechanistic and microkinetic analysis of Co2 hydrogenation on ceria. Phys Chem Chem Phys 18:7987–7996

    Article  CAS  PubMed  Google Scholar 

  69. Guo Y, Mei S, Yuan K, Wang D-J, Liu H-C, Yan C-H, Zhang Y-W (2018) Low-temperature Co2 methanation over Ceo2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal 8:6203–6215

    Article  CAS  Google Scholar 

  70. Lin L, Yao S, Liu Z, Zhang F, Li N, Vovchok D, Martínez-Arias A, Castañeda R, Lin J, Senanayake SD (2018) In situ characterization of Cu/Ceo2 nanocatalysts for Co2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity. J Phys Chem C 122:12934–12943

    Article  CAS  Google Scholar 

  71. Vayssilov GN, Mihaylov M, Petkov PS, Hadjiivanov KI, Neyman KM (2011) Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation. J Phys Chem C 115:23435–23454

    Article  CAS  Google Scholar 

  72. Millar GJ, Rochester CH, Bailey S, Waugh KC (1992) A combined temperature-programmed reaction spectroscopy and fourier-transform infrared spectroscopy study of Co2–H2 and Co–Co2–H2 interactions with model Zno/Sio2, Cu/Sio2 and Cu/Zno/Sio2 methanol-synthesis catalysts. J Chem Soc Faraday Trans 88:2085–2093

    Article  CAS  Google Scholar 

  73. He M-Y, White J, Ekerdt JG (1985) Co and Co2 hydrogenation over metal oxides: a comparison of Zno, Tio2 and Zro2. J Mol Catal 30:415–430

    Article  CAS  Google Scholar 

  74. Westermann A, Azambre B, Bacariza M, Graça I, Ribeiro M, Lopes J, Henriques C (2017) The promoting effect of Ce in the Co2 methanation performances on niusy zeolite: a FTIR in situ/operando study. Catal Today 283:74–81

    Article  CAS  Google Scholar 

  75. Raskó J, Kecskés T, Kiss J (2004) Formaldehyde formation in the interaction of Hcooh with Pt supported on Tio2. J Catal 224:261–268

    Article  CAS  Google Scholar 

  76. Kecskés T, Raskó J, Kiss J (2004) Ftir and mass spectrometric study of hcooh interaction with Tio2 supported Rh and Au catalysts. Appl Catal A 268:9–16

    Article  CAS  Google Scholar 

  77. Kecskés T, Raskó J, Kiss J (2004) Ftir and mass spectrometric studies on the interaction of formaldehyde with Tio2 supported Pt and Au catalysts. Appl Catal A 273:55–62

    Article  CAS  Google Scholar 

  78. Binet C, Daturi M (2001) Methanol as an Ir probe to study the reduction process in ceria-zirconia mixed compounds. Catal Today 70:155–167

    Article  CAS  Google Scholar 

  79. Ferencz Z, Erdohelyi A, Baán K, Oszkó A, Óvári L, Kónya Z, Papp C, Steinrück H-P, Kiss J (2014) Effects of support and Rh additive on Co-based catalysts in the ethanol steam reforming reaction. ACS Catal 4:1205–1218

    Article  CAS  Google Scholar 

  80. Raskó J, Bontovics J, Solymosi F (1994) FTIR study of the interaction of methanol with clean and potassium-doped PdSio2 catalysts. J Catal 146:22–33

    Article  Google Scholar 

  81. del Río E, Collins SE, Aguirre A, Chen X, Delgado JJ, Calvino JJ, Bernal S (2014) Reversible deactivation of a Au/Ce0.62Zr0.38O2 catalyst in Co oxidation: a systematic study of Co2-triggered carbonate inhibition. J Catal 316:210–218

    Article  CAS  Google Scholar 

  82. Schumacher B, Denkwitz Y, Plzak V, Kinne M, Behm R (2004) Kinetics, mechanism, and the influence of H2 on the Co oxidation reaction on a Au/Tio2 catalyst. J Catal 224:449–462

    Article  CAS  Google Scholar 

Download references

Acknowledgement

AS gratefully acknowledges the support of the Bolyai Janos Research Fellowship of the Hungarian Academy of Science and the “UNKP-20-5-SZTE-663” New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund. ISZ grateful for the fund of UNKP-20-4-SZTE-634 New National Excellence Program of the Ministry for Innovation and Technology The financial support of the Hungarian National Research, Development and Innovation Office through the GINOP-2.3.2-15-2016-00013 project "Intelligent materials based on functional surfaces—from syntheses to applications" and the Ministry of Human Capacities through the EFOP-3.6.1-16-2016-00014 project and the 20391-3/2018/FEKUSTRAT are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Sápi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, T., Sápi, A., Ábel, M. et al. Surface Engineering of CeO2 Catalysts: Differences Between Solid Solution Based and Interfacially Designed Ce1−xMxO2 and MO/CeO2 (M = Zn, Mn) in CO2 Hydrogenation Reaction. Catal Lett 151, 3477–3491 (2021). https://doi.org/10.1007/s10562-021-03591-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03591-y

Keywords

Navigation