Skip to main content
Log in

The Formation of Mn-Ce Oxide Catalysts for CO Oxidation by Oxalate Route: The Role of Annealing Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Mn-Ce oxide catalysts with Mn:Ce = 1 was synthesized by oxalate route under different annealing conditions. The physicochemical properties were characterized by means of XRD, HRTEM, N2 adsorption, TPR, XPS and DD technique. All the catalysts were investigated in the CO oxidation reaction. The annealing conditions exhibited a great impact on the structural properties, which resulted in different catalytic performance. The activity of the samples calcined in air exceeds the activity of the samples prepared in argon at a similar temperature. In the inert at 300–400 °C, the oxalate precursor does not completely decompose to oxide; at 500–600 °C, MnO and ceria are formed. For the Mn-Ce oxide catalyst obtained in air, the combination of XRD, DD and TPR showed that the catalyst consists of a MnxCe1-xO2-δ (x ~ 0.2) solid solution, amorphous and crystalline manganese oxides (Mn3O4, Mn2O3, Mn5O8). XPS analysis indicates that the catalyst surface contains Mn cations in the form of Mn2+, Mn3+ and Mn4+. An increase in the calcination temperature results in the oxide sintering. During the variation of the calcination time at 300 °C, the composition of the MnxCe1-xO2-δ solid solution does not change, while transformations occur in Mn oxides. The most active Mn-Ce catalyst was obtained by annealing at 300 °C for 10 h in air and consists of a MnxCe1-xO2-δ solid solution and Mn5O8.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xu H, Yan N, Qu Z et al (2017) Environ Sci Technol 51:8879

    Article  CAS  PubMed  Google Scholar 

  2. Gao Y, Wu X, Liu S, Weng D, Ran R (2018) Catal Surv Asia 22:230

    Article  CAS  Google Scholar 

  3. Shen B, Zhang X, Ma H, Yao Y, Liu T (2013) Int J Environ Sci 25:791

    CAS  Google Scholar 

  4. Zhao B, Ran R, Wu X, Weng D, Wu X, Huang C (2014) Catal Commun 56:36

    Article  CAS  Google Scholar 

  5. Chen Z, Jiao Z, Pan D et al (2012) Chem Rev 112:3833

    Article  CAS  PubMed  Google Scholar 

  6. Ramesh K, Chen L, Chen F, Liu Y, Wang Z, Han Y-F (2008) Catal Today 131:477

    Article  CAS  Google Scholar 

  7. Liang S, Teng F, Bulgan G, Zong R, Zhu Y (2008) J Phys Chem C 112:5307

    Article  CAS  Google Scholar 

  8. Iablokov V, Frey K, Geszti O, Kruse N (2010) Catal Lett 134:210

    Article  CAS  Google Scholar 

  9. Frey K, Iablokov V, Sáfrán G, Osán J, Sajó I, Szukiewicz R et al (2012) J Catal 287:30

    Article  CAS  Google Scholar 

  10. Du J, Qu Z, Dong C, Song L, Qin Y (2018) Apl Surf Sci 433:1025

    Article  CAS  Google Scholar 

  11. Chen J, Chen X, Chen X, Xu W, Xu Z, Jia H et al (2018) Appl Catal B Environ 224:825

    Article  CAS  Google Scholar 

  12. Hu F, Chen J, Zhao S, Li K, Si W, Song H et al (2017) Appl Catal A Gen 540:57

    Article  CAS  Google Scholar 

  13. Arena F, DiChio R, Fazio B, Espro C, Spiccia L, Palella A et al (2017) Appl Catal B Environ 210:14

    Article  CAS  Google Scholar 

  14. Colman-Lerner E, Peluso MA, Sambeth J, Thomas H (2016) J Rare Earths 34:675

    Article  CAS  Google Scholar 

  15. Zhang P, Lu H, Zhou Y, Zhang L, Wu Z, Yang S et al (2015) Nat Commun 2015:6

    Google Scholar 

  16. Venkataswamy P, Rao KN, Jampaiah D, Reddy BM (2015) Appl Catal B Environ 162:122

    Article  CAS  Google Scholar 

  17. Yu D, Liu Y, Wu Z (2010) Catal Commun 11:788

    Article  CAS  Google Scholar 

  18. Delimaris D, Ioannides T (2008) Appl Catal B Environ 84:303

    Article  CAS  Google Scholar 

  19. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J et al (2006) Appl Catal B Environ 62:265

    Article  CAS  Google Scholar 

  20. Sun H, Yu X, Ma X, Yang X, Lin M, Ge M (2019) Catal Today 355:580

    Article  CAS  Google Scholar 

  21. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Chem Rev 116:5987–6041

    Article  CAS  PubMed  Google Scholar 

  22. Gao X, Dollimore D (1993) Thermochim Acta 215:47

    Article  CAS  Google Scholar 

  23. Małecka B, Drozdz-Cieśla E, Olszewski PK (2003) J Therm 74:485

    Google Scholar 

  24. Donkova B, Mehandjiev D (2004) Thermochim Acta 421:141

    Article  CAS  Google Scholar 

  25. Ma X, Campbell N, Madec L, Rankin MA, Croll LM, Dahn JR (2016) J Colloid Interface Sci 465:323

    Article  CAS  PubMed  Google Scholar 

  26. Maslennikov DV, Matvienko AA, Chizhik SA, Sidelnikov AA (2019) Ceram Int 45:4137

    Article  CAS  Google Scholar 

  27. Tang W, Wu X, Li D, Wang Z, Liu G, Liu H et al (2014) J Mater Chem 2:2544

    Article  CAS  Google Scholar 

  28. Yu C, Zhang L, Shi J, Zhao J, Gao J, Yan D (2008) Adv Funct Mater 18:1544

    Article  CAS  Google Scholar 

  29. Fairley N. www.casaxps.com

  30. Shirley DA (1972) Phys Rev B 5:4709

    Article  Google Scholar 

  31. Scofield JH (1976) J Electron Spectrosc Relat Phenom 8:129

    Article  CAS  Google Scholar 

  32. Malakhov VV, Vasilyeva IG (2008) Russ Chem Rev 77:351

    Article  CAS  Google Scholar 

  33. Lin J, Guo Y, Chen X, Li C, Lu S, Liew KM (2018) Catal Lett 148:181

    Article  CAS  Google Scholar 

  34. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  35. Qi G, Yang RT (2004) J Phys Chem B 108:15738

    Article  CAS  Google Scholar 

  36. Govinda Rao B, Jampaiah D, Venkataswamy P, Reddy BM (2016) ChemistrySelect 1:6681

    Article  CAS  Google Scholar 

  37. Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) Appl Catal B Environ 99:353

    Article  CAS  Google Scholar 

  38. Kim SC, Shim WG (2010) Appl Catal B Environ 98:180

    Article  CAS  Google Scholar 

  39. Gao T, Norby P, Krumeich F, Okamoto H, Nesper R, Fjellvåg H (2010) J Phys Chem C 114:922

    Article  CAS  Google Scholar 

  40. Zaki MI, Nohman AKH, Kappenstein C, Wahdan TM (1995) J Mater Chem 5:1081

    Article  CAS  Google Scholar 

  41. Shan X, Guo F, Xu W, Teng X (2017) Front Energy Res 11:383

    Article  Google Scholar 

  42. Stobbe ER, De Boer BA, Geus JW (1999) Catal Today 47:161

    Article  CAS  Google Scholar 

  43. Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Appl Catal B Environ 3:173

    Article  CAS  Google Scholar 

  44. Bulavchenko OA, Venediktova OS, Afonasenko TN, Tsyrul’Nikov PG, Saraev AA, Kaichev VV et al (2018) RSC Adv 8:11598

    Article  CAS  Google Scholar 

  45. Bulavchenko OA, Gerasimov EY, Afonasenko TN (2018) Dalton Trans 47:17153

    Article  CAS  PubMed  Google Scholar 

  46. Borchert H, Frolova YV, Kaichev VV et al (2005) J Phys Chem B 109:5728

    Article  CAS  PubMed  Google Scholar 

  47. Christoua SY, Álvarez-Galvánb MC, Fierrob JLG, Efstathioua AM (2011) Appl Catal B 106:103

    Google Scholar 

  48. Regan E, Groutso T, Metson JB et al (1999) Surf Interface Anal 27:1064

    Article  CAS  Google Scholar 

  49. Oku M, Hirokawa K, Ikeda S (1975) J Electron Spectrosc Relat Phenom 7:465

    Article  CAS  Google Scholar 

  50. Castro VD, Polzonetti G (1989) J Electron Spectrosc Relat Phenom 48:117

    Article  Google Scholar 

  51. Bondi JF, Oyler KD, Ke X, Schiffer P, Schaak RE (2008) J Am Chem Soc 131:9144

    Article  CAS  Google Scholar 

  52. Han Y-F, Chen F, Zhong Z, Ramesh K, Chen L, Widjaja E (2006) J Phys Chem B 110:24450

    Article  CAS  PubMed  Google Scholar 

  53. Han Y-F, Chen L, Ramesh K et al (2008) Catal 131:35–41

    CAS  Google Scholar 

  54. Yang X, Wang X, Zhang G et al (2012) Int J Hydrog Energy 37:11167

    Article  CAS  Google Scholar 

  55. Liu Y, Li J, Li W, Li Y, Chen Q, Zhan F (2015) J Power Sources 299:492

    Article  CAS  Google Scholar 

  56. Kong W, Gao B, Jiang C, Chang A (2015) J Alloys Compd 650:305

    Article  CAS  Google Scholar 

  57. Zhang L, Tang Z, Wang S, Ding D, Chen M, Wan H (2012) Surf Sci 606:1507

    Article  CAS  Google Scholar 

  58. Jadhav PR, Suryawanshi MP, Dalavi DS et al (2015) Electrochim Acta 176:523

    Article  CAS  Google Scholar 

  59. Kostowskyj MA, Kirk DW, Thorpe SJ (2010) Int J Hydrog Energy 35:5666

    Article  CAS  Google Scholar 

  60. Hishida T, Ohbayashi K, Saitoh T (2013) J Appl Phys 113:043710

    Article  CAS  Google Scholar 

  61. Bulavchenko OA, Pochtar AA, Gerasimov EY et al (2020) Appl Catal A Gen 590:1

    Article  CAS  Google Scholar 

  62. Komova OV, Odegova GV, Gorlova AM et al (2019) Int J Hydrog Energy 44:24277

    Article  CAS  Google Scholar 

  63. Murugan B, Ramaswamy AV, Srinivas D, Gopinath CS, Ramaswamy V (2005) Chem Mater 17:3983

    Article  CAS  Google Scholar 

  64. Lin X, Li S, He H, Wu Z, Wu J, Chen L et al (2018) Appl Catal B Environ 223:91

    Article  CAS  Google Scholar 

  65. Zhang X, Zhao J, Song Z, Liu W, Zhao H, Zhao M et al (2020) J Colloid Interface Sci 562:170

    Article  CAS  PubMed  Google Scholar 

  66. Putla S, Amin MH, Reddy BM, Nafady A, Al Farhan KA, Bhargava SK (2015) ACS Appl Mater Interfaces 7:16525

    Article  CAS  PubMed  Google Scholar 

  67. Dosa M, Piumetti M, Bensaid S et al (2018) Catal Lett 148:298

    Article  CAS  Google Scholar 

  68. Oswald HR, Feitknecht W, Wampetich MJ (1965) Nature 207:72

    Article  CAS  Google Scholar 

  69. Qi K, Xie J, Fang D, Liu X, Gong P, Li F et al (2018) Mater Chem Phys 209:10

    Article  CAS  Google Scholar 

  70. Chen F, Zhao S, Yang T, Jiang T, Ni J, Xiong H et al (2019) Chin J Chem Eng 27:2438

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation, grant 19-73-00097. The experiments were performed using facilities of the shared research center “National center of investigation of catalysts” at Boreskov Institute of Catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Bulavchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulavchenko, O.A., Afonasenko, T.N., Osipov, A.R. et al. The Formation of Mn-Ce Oxide Catalysts for CO Oxidation by Oxalate Route: The Role of Annealing Conditions. Catal Lett 151, 2906–2918 (2021). https://doi.org/10.1007/s10562-021-03542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03542-7

Keywords

Navigation