Skip to main content
Log in

Enhanced Hydrolysis of Cellulose to Reducing Sugars on Kaolinte Clay Activated by Mineral Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Kaolinite, a natural, layered phyllosilicate, has been used as the solid catalyst for the hydrolysis of cellulose in our previous work. In the present study, kaolinite was activated by mineral acid and further evaluated for the hydrolysis of cellulose in water. The acid-activated kaolinite was characterized by XRF, XRD, FT-IR, BET and TG. The effects of reaction temperature, reaction time, mass ratio and water amount were investigated in the system. It was found that the highest total reducing sugars (TRS) yield of 50.2% was obtained on the kaolinite activated by 20% HNO3 with the mass ratio of catalyst to cellulose of 0.2 and water to cellulose of 14 at 205 ℃ for 3 h. Moreover, the catalyst was easily regenerated by calcination and the yield of TRS on the regenerated catalyst changed between 50.2% and 45.2% after four times reuse. The results showed that the acid activation could influence the crystallinity and improve the specific surface area, but the high TRS yield of the activated kaolinite should be ascribed to the increasing of the interlayer Al–OH groups and the formation of inner hydrogen bonds between the octahedral sheets and tetrahedral sheets. Finally, it was suggested that this was the effective way for improving the catalytic performance by increasing the interlayer Al–OH groups on the kaolinite catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Phillips D, Mitchell EJS, Lea-Langton AR, Parmar KR, Jones JM, Williams A (2016) The use of conservation biomass feedstocks as potential bioenergy resources in the United Kingdom. Bioresource Technol 212:271–279

    Article  CAS  Google Scholar 

  2. Al-Hamamre Z, Saidan M, Hararah M, Rawajfeh K, Alkhasawneh HE, Al-Shannag M (2017) Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew Sust Energ Rev 67:295–314

    Article  CAS  Google Scholar 

  3. Larsson M, Yan J, Nordenskjöld C, Forsberg K, Liu L (2016) Characterisation of stormwater in biomass-fired combined heat and power plants – Impact of biomass fuel storage. Appl Energ 170:116–129

    Article  Google Scholar 

  4. Chen W, Li Q, Cao J, Liu Y, Li J, Zhang J, Luo S, Yu H (2015) Revealing the structures of cellulose nanofiber bundles obtained by mechanical nanofibrillation via TEM observation. Carbohyd Polym 117:950–956

    Article  CAS  Google Scholar 

  5. Qu H, Liu B, Li L, Zhou Y (2020) A bifunctional recoverable catalyst based on phosphotungstic acid for cellulose hydrolysis to fermentable sugars. Fuel Process Technol 199:106272

    Article  CAS  Google Scholar 

  6. Saher S, Saleem H, Asim AM, Uroos M, Muhammad N (2018) Pyridinium based ionic liquid: A pretreatment solvent and reaction medium for catalytic conversion of cellulose to total reducing sugars (TRS). J Mol Liq 272:330–336

    Article  CAS  Google Scholar 

  7. Prasertsung I, Aroonraj K, Kamwilaisak K, Saito N, Damrongsakkul S (2019) Production of reducing sugar from cassava starch waste (CSW) using solution plasma process (SPP). Carbohyd Polym 205:472–479

    Article  CAS  Google Scholar 

  8. Hu M, Yu H, Li Y, Li A, Cai Q, Liu P, Tu Y, Wang Y, Hu R, Hao B, Peng L, Xia T (2018) Distinct polymer extraction and cellulose DP reduction for complete cellulose hydrolysis under mild chemical pretreatments in sugarcane. Carbohyd Polym 202:434–443

    Article  CAS  Google Scholar 

  9. Chen Z, Li Q, Xiao Y, Zhang C, Fu Z, Liu Y, Yi X, Zheng A, Li C, Yin D (2018) Acid–base synergistic catalysis of biochar sulfonic acid bearing polyamide for microwave-assisted hydrolysis of cellulose in water. Cellulose 26:751–762

    Article  CAS  Google Scholar 

  10. Gromov NV, Medvedeva TB, Taran OP, Bukhtiyarov AV, Aymonier C, Prosvirin IP, Parmon VN (2018) Hydrothermal solubilization–hydrolysis–dehydration of cellulose to glucose and 5-hydroxymethylfurfural over solid acid carbon catalysts. Top Catal 61:1912–1927

    Article  CAS  Google Scholar 

  11. Zhou L, He Y, Ma Z, Liang R, Wu T, Wu Y (2015) One-step degradation of cellulose to 5-hydroxymethylfurfural in ionic liquid under mild conditions. Carbohyd Polym 117:694–700

    Article  CAS  Google Scholar 

  12. Mo X, Lopez D, Suwannakarn K, Liu Y, Lotero E, Goodwinjr J, Lu C (2008) Activation and deactivation characteristics of sulfonated carbon catalysts. J Catal 254:332–338

    Article  CAS  Google Scholar 

  13. Sumiya S, Oumi Y, Sadakane M, Sano T (2009) Facile preparation of SBA-15-supported niobic acid (Nb2O5·nH2O) catalyst and its catalytic activity. Appl Catal A-Gen 365:261–267

    Article  CAS  Google Scholar 

  14. Trombettoni V, Lanari D, Prinsen P, Luque R, Marrocchi A, Vaccaro L (2018) Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Prog Energ Combust 65:136–162

    Article  Google Scholar 

  15. Lang X, Jia W, Wang Y, Zhu Z (2015) Novel fluorination of polystyrene sulfonic acid resin by CF3SO3H for high stability and strong acidity. Catal Commun 70:58–61

    Article  CAS  Google Scholar 

  16. Chu S, Ln Y, Guo X, Dong L, Chen X, Li Y, Mu X (2018) The influence of pore structure and Si/Al ratio of HZSM-5 zeolites on the product distributions of α-cellulose hydrolysis. Mol Catal 445:240–247

    Article  CAS  Google Scholar 

  17. Zhang X, Zhang X, Sun N, Wang S, Wang X, Jiang Z (2019) High production of levulinic acid from cellulosic feedstocks being catalyzed by temperature-responsive transition metal substituted heteropolyacids. Renew Energ 141:802–813

    Article  CAS  Google Scholar 

  18. He Y, Zhang Q, Zhan X, Cheng D-g, Chen F (2016) Synthesis of efficient SBA-15 immobilized ionic liquid catalyst and its performance for Friedel-Crafts reaction. Catal Today 276:112–120

    Article  CAS  Google Scholar 

  19. Wang Y, Yang X, Xu J, Wang H, Wang Z, Zhang L, Wang S, Liang J (2019) Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst. Renew Energ 139:688–695

    Article  CAS  Google Scholar 

  20. Zhou CH (2011) An overview on strategies towards clay-based designer catalysts for green and sustainable catalysis. Appl Clay Sci 53:87–96

    Article  CAS  Google Scholar 

  21. Zhang D, Zhou C, Lin C, Tong D, Yu W (2010) Synthesis of clay minerals. Appl Clay Sci 50:1–11

    Article  CAS  Google Scholar 

  22. Moronta A, Ferrer V, Quero J, Arteaga G, Choren E (2002) Influence of preparation method on the catalytic properties of acid-activated tetramethylammonium-exchanged clays. Appl Catal A-Gen 230:127–135

    Article  CAS  Google Scholar 

  23. Kooli F, Liu Y, Alshahateet SF, Messali M, Bergaya F (2009) Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Appl Clay Sci 43:357–363

    Article  CAS  Google Scholar 

  24. Tong D, Xia X, Luo X, Wu L, Lin C, Yu W, Zhou C, Zhong Z (2013) Catalytic hydrolysis of cellulose to reducing sugar over acid-activated montmorillonite catalysts. Appl Clay Sci 74:147–153

    Article  CAS  Google Scholar 

  25. Yang H, Zhou Y, Tong D, Yang M, Fang K, Zhou C, Yu W (2020) Catalytic conversion of cellulose to reducing sugars over clay-based solid acid catalyst supported nanosized SO42−-ZrO2. Appl Clay Sci 185:105376

    Article  CAS  Google Scholar 

  26. Jia X, Cheng H, Zhou Y, Zhang S, Liu Q (2019) Time-efficient preparation and mechanism of methoxy-grafted kaolinite via acid treatment and heating. Appl Clay Sci 174:170–177

    Article  CAS  Google Scholar 

  27. Yang H, Tong D, Dong Y, Ren L, Fang K, Zhou C, Yu W (2020) Kaolinite: A natural and stable catalyst for depolymerization of cellulose to reducing sugars in water. Appl Clay Sci 188:105512

    Article  CAS  Google Scholar 

  28. Panda AK, Mishra BG, Mishra DK, Singh RK (2010) Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloid Surface A 363:98–104

    Article  CAS  Google Scholar 

  29. Singh S, Bothara SB, Singh S, Patel R, Ughreja R (2011) Preliminary Pharmaceutical Characterization of Some Flowers as Natural Indicator: Acid-Base Titration. Pharmacognosy Journal 3:39–43

    Article  CAS  Google Scholar 

  30. Zhu B, Qi C, Zhang Y, Bisson T, Xu Z, Fan Y, Sun Z (2019) Synthesis, characterization and acid-base properties of kaolinite and metal (Fe, Mn, Co) doped kaolinite. Appl Clay Sci 179:105138

    Article  CAS  Google Scholar 

  31. Li C, Huang Y, Dong X, Sun Z, Duan X, Ren B, Zheng S, Dionysiou DD (2019) Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine. Appl Catal B-Environ 247:10–23

    Article  CAS  Google Scholar 

  32. Aung LL, Tertre E, Suksabye P, Worasith N, Thiravetyan P (2014) Effect of Alumina Content and Surface Area of Acid-Activated Kaolin on Bleaching of Rice Bran Oil. J Am Oil Chem Soc 92:295–304

    Article  CAS  Google Scholar 

  33. Győrfi K, Vágvölgyi V, Zsirka B, Horváth E, Szilágyi RK, Baán K, Balogh S, Kristóf J (2020) Kaolins of high iron-content as photocatalysts: Challenges of acidic surface modifications and mechanistic insights. Appl Clay Sci 195:105722

    Article  CAS  Google Scholar 

  34. Tao P, Zhang Y, Wu Z, Liao X, Nie S (2019) Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: Transition of cellulose crystal structure. Carbohydr Polym 214:1–7

    Article  CAS  PubMed  Google Scholar 

  35. Abukhadra MR, Allah AF (2019) Synthesis and characterization of kaolinite nanotubes (KNTs) as a novel carrier for 5-fluorouracil of high encapsulation properties and controlled release. Inorg Chem Commun 103:30–36

    Article  CAS  Google Scholar 

  36. Li X, Wang D, Liu Q, Komarneni S (2019) A comparative study of synthetic tubular kaolinite nanoscrolls and natural halloysite nanotubes. Appl Clay Sci 168:421–427

    Article  CAS  Google Scholar 

  37. Qu H, He S, Su H (2019) Efficient preparation of kaolinite/methanol intercalation composite by using a Soxhlet extractor. Sci Rep 9:8351

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cao Y, Tan H (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705:189–193

    Article  CAS  Google Scholar 

  39. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd Res 340:2376–2391

    Article  CAS  Google Scholar 

  40. Temuujin J, Burmaa G, Amgalan J, Okada K, Jadambaa T, Mackenzie K (2001) Preparation of porous silica from mechanically activated kaolinite. J Porous Mat 8:233–238

    Article  CAS  Google Scholar 

  41. Zhou Y, Yang M, Tong D, Yang H, Fang K (2019) Eco-Friendly Ca-Montmorillonite Grafted by Non-Acidic Ionic Liquid Used as A Solid Acid Catalyst in Cellulose Hydrolysis to Reducing Sugars. Molecules. https://doi.org/10.3390/molecules24010183

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lai D, Deng L, Li J, Liao B, Guo Q, Fu Y (2011) Hydrolysis of cellulose into glucose by magnetic solid acid. Chemsuschem 4:55–58

    Article  CAS  PubMed  Google Scholar 

  43. Tian J, Wang J, Zhao S, Jiang C, Zhang X, Wang X (2010) Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose 17:587–594

    Article  CAS  Google Scholar 

  44. Allahdin O, Wartel M, Tricot G, Revel B, Boughriet A (2016) Hydroxylation and dealumination of a metakaolinite-rich brick under acid conditions, and their influences on metal adsorption: One- and two-dimensional (1H, 27Al, 23Na, 29Si) MAS NMR, and FTIR studies. Micropor Mesopor Mat 226:360–368

    Article  CAS  Google Scholar 

  45. Abou-El-Sherbini KS, Elzahany EAM, Wahba MA, Drweesh SA, Youssef NS (2017) Evaluation of some intercalation methods of dimethylsulphoxide onto HCl-treated and untreated Egyptian kaolinite. Appl Clay Sci 137:33–42

    Article  CAS  Google Scholar 

  46. Hu L, Wu Z, Xu J, Sun Y, Lin L, Liu S (2014) Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid. Chem Eng J 244:137–144

    Article  CAS  Google Scholar 

  47. Shrotri A, Kobayashi H, Fukuoka A (2018) Cellulose depolymerization over heterogeneous catalysts. Acc Chem Res 51:761–768

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the National Natural Scientific Foundation of China (21506188), the Natural Scientific Foundation of Zhejiang Province ZJNSF (LY16B030010), China Postdoctoral Science Foundation (2018M630688), the project from Science and Technology Department of Wenzhou (ZG2020019, G20180017) and Project of Zhejiang ″151″ talents project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongshen Tong.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Tong, D., Ren, L. et al. Enhanced Hydrolysis of Cellulose to Reducing Sugars on Kaolinte Clay Activated by Mineral Acid. Catal Lett 151, 2797–2806 (2021). https://doi.org/10.1007/s10562-020-03497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03497-1

Keywords

Navigation