Skip to main content
Log in

Effect of Crystallite Size Distribution on the Oxidation and Re-reduction of Cobalt in the Fischer–Tropsch Synthesis: A Thermodynamic Analysis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nano-sized cobalt crystallites may oxidize under realistic Fischer–Tropsch conditions, especially when operating at high conversion where oxygen availability on the surface is large. The extent of deactivation due to oxidation differs for monodispersed catalysts as opposed to a log-normal distribution of cobalt crystallites. The optimum cobalt crystallite size for a Fischer–Tropsch catalyst is dependent on not only the mean particle size, but also the log-normal variance and conversion level.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Demirbas A (2007) Prog Energy Combust Sci 33:1–18

    Article  CAS  Google Scholar 

  2. Hilkiah Igoni A, Ayotamuno MJ, Eze CL et al (2008) Appl Energy 85:430–438

    Article  Google Scholar 

  3. Al-Zuhairi F (2017) PhD Thesis, Univeristy of Naples, Italy

  4. Liu G, Larson ED, Williams RH et al (2011) Energy Fuels 25:415–437

    Article  CAS  Google Scholar 

  5. de Klerk A (2016). In: Davis BH, Occelli ML (eds) Fischer-Tropsch synthesis catalysts, and catalysis. CRC Press, Boca Raton, pp 379–399

    Chapter  Google Scholar 

  6. Rytter E, Holmen A (2015) Catalysts 5:478–499

    Article  CAS  Google Scholar 

  7. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  8. Schanke D, Hilmen AM, Bergene E et al (1995) Catal Lett 34:269–284

    Article  CAS  Google Scholar 

  9. Ma W, Jacobs G, Ji Y et al (2011) Top Catal 54:757–767

    Article  CAS  Google Scholar 

  10. Bukur DB, Pan Z, Ma W et al (2012) Catal Lett 142:1382–1387

    Article  CAS  Google Scholar 

  11. Tucker CL, Claeys M, van Steen E (2020) Catal Sci Technol 10:7056–7066

    Article  CAS  Google Scholar 

  12. Li J, Zhan X, Zhang Y et al (2002) Appl Catal A 228:203–212

    Article  CAS  Google Scholar 

  13. Fischer N, Clapham B, Feltes T et al (2014) Angew Chem Int Ed 53:1342–1345

    Article  CAS  Google Scholar 

  14. Lancelot C, Ordomsky V, Stéphan O et al (2014) ACS Catal 4:4510–4515

    Article  CAS  Google Scholar 

  15. Bezemer G, Bitter JH, Kuipers HPCE et al (2006) J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  16. den Breejen JP, Sietsma JRA, Friedrich H et al (2010) J Catal 270:146–152

    Article  Google Scholar 

  17. Fischer N, van Steen E, Claeys M (2013) J Catal 299:67–80

    Article  CAS  Google Scholar 

  18. van Steen E, Claeys M, Dry M et al (2005) J Phys Chem B 109:3575–3577

    Article  Google Scholar 

  19. Vogel AP, van Dyk B, Saib AM (2016) Catal Today 259:323–330

    Article  CAS  Google Scholar 

  20. van Helden P, Ciobîcă IM, Coetzer RJ (2016) Catal Today 261:48–59

    Article  Google Scholar 

  21. Barbier A, Tuel A, Arcon I et al (2001) J Catal 200:106–116

    Article  CAS  Google Scholar 

  22. Martínez A, Prieto G (2007) J Catal 245:470–476

    Article  Google Scholar 

  23. Prieto G, Martinez A, Concepcion P et al (2009) J Catal 266:129–144

    Article  CAS  Google Scholar 

  24. Xiong H, Motchelaho MAM, Moyo M et al (2011) J Catal 278:26–40

    Article  CAS  Google Scholar 

  25. Wang ZJ, Skiles S, Yang F et al (2012) Catal Today 181:75–81

    Article  CAS  Google Scholar 

  26. Yang J, Froseth V, Chen D et al (2016) Surf Sci 648:66–73

    Article  Google Scholar 

  27. Luo Q-X, Guo L-P, Yao S-Y et al (2019) J Catal 369:143–156

    Article  CAS  Google Scholar 

  28. Botes FG, van Dyk B, McGregor C (2009) Ind Eng Chem Res 48:10439–10447

    Article  CAS  Google Scholar 

  29. Tucker CL, van Steen E (2020) Catal Today 342:115–123

    Article  CAS  Google Scholar 

Download references

Funding

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Number: 114606). Funding by Sasol and L’Oreal-UNESCO for Women in Science Fellowship is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric van Steen.

Ethics declarations

Conflict of interest

No conflicts of interest are noted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tucker, C., van Steen, E. Effect of Crystallite Size Distribution on the Oxidation and Re-reduction of Cobalt in the Fischer–Tropsch Synthesis: A Thermodynamic Analysis. Catal Lett 151, 2631–2637 (2021). https://doi.org/10.1007/s10562-020-03475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03475-7

Keywords

Navigation