Skip to main content
Log in

Novel Mo-V Oxide Catalysts with Nanospheres as Templates for the Selective Oxidation of Acrolein to Acrylic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Novel Mo-V-PMMA and Mo-V-PS catalysts are prepared by addition of hard polymethyl methacrylate (PMMA) and polystyrene (PS) nanospheres into Mo/V compounds in the preparation process, respectively. The catalytic tests in selective oxidation of acrolein reveal that Mo-V-PMMA catalyst shows very high acrolein conversion (99.1%) and the yield of acrylic acid (90.7%). The BET, DLS, SAXS, XRD, XPS, H2-TPR and NH3-TPD measurements reveal that the addition of PMMA and PS nanospheres causes the obvious changes of porous structure, crystal phases composition and chemical properties of catalysts. These differences between Mo-V-PMMA and Mo-V-PS catalysts are attributed to the totally different “real” nano–environment during heat treatment in the high–concentration component mixture. PS nanospheres are in a state of adhesion or agglomeration or not uniformly distributed in the active component solution, while PMMA nanospheres with much better hydrophilicity and monodispersed state promote Mo and V ions more easily and uniformly dispersed in the mixture.

Graphic abstract

Novel Mo-V catalysts are prepared by addition of hard polymethyl methacrylate (PMMA) and polystyrene (PS) nanospheres into Mo/V mixture. Obvious changes of porous structure, crystal phases and chemical properties of catalysts are caused by the nanospheres introduction, showing very high acrolein conversion (99.1%) and the yield of acrylic acid (90.7%) in selective oxidation of acrolein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen LQ, Liang J, Lin H, Weng WZ, Wan HL, Vedrine JC (2005) Appl Catal A 293:49–55

    Article  CAS  Google Scholar 

  2. S.A. Schunk, in: Handbook of Heterogeneous Catalysis, vol. 2, eds. G. Ertl, H. Knoezinger, F. Schuth, and J. Weitkamp (Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, 2008) ch 7.

  3. Liu JW, Mohamed F, Sauer J (2014) J Catal 317:75–82

    Article  CAS  Google Scholar 

  4. Centi G, Cavani F, Trifiro F (2001) Selective oxidation by heterogeneous catalysis. Kluwer Academic/ Plenum Publishers, New York

    Book  Google Scholar 

  5. B.K. Hodnett, Heterogeneous Catalytic Oxidation (Wiley, New York, 2000.)

  6. Vedrine JC, Coudurier G, Millet JMM (1997) Catal Today 33:3–13

    Article  CAS  Google Scholar 

  7. Korovchenko P, Shiju NR, Dozier AK, Graham UM, Guerrero-Pérez MO, Guliants VV (2008) Top Catal 50:43–51

    Article  CAS  Google Scholar 

  8. Ueda W, Endo Y, Watanabe N (2006) Top Catal 38:261–268

    Article  CAS  Google Scholar 

  9. Baca M, Aouine M, Dubois JL, Millet JMM (2005) J Catal 233:234–241

    Article  CAS  Google Scholar 

  10. Al-Saeedi JN, Guliants VV, Guerrero-Perez O, Banares MA (2003) J Catal 215:108–115

    Article  CAS  Google Scholar 

  11. Blasco T, Botella P, Concepcion P, Lopez Nieto JM, Martinez-Arias A, Prieto C (2004) J Catal 228:362–373

    Article  CAS  Google Scholar 

  12. Wagner JB, Timpe O, Hamid FA, Trunschke A, Wild U, Su DS, Widi RK, Abd Hamid SB, Schlogl R (2006) Top Catal 38:51–58

    Article  CAS  Google Scholar 

  13. Huynh Q, Schuurman Y, Delichere P, Loridant S, Millet JMM (2009) J Catal 261:166–176

    Article  CAS  Google Scholar 

  14. Taufiq-Yap YH, Asrina SN, Hutchings GJ, Dummer NF, Bartley JK (2011) J Natural Gas Chem 20:635–638

    Article  CAS  Google Scholar 

  15. Nilsson J, Landa-Canovas A, Hansen S, Andersson A (1977) Catal Today 33:97–108

    Article  Google Scholar 

  16. Getsoian A, Shapovalov V, Bell AT (2013) J Phys Chem C 117:7123–7137

    Article  CAS  Google Scholar 

  17. Ueda W, Vitry D, Katou T (2005) Catal Today 99:43–49

    Article  CAS  Google Scholar 

  18. Baca M, Pigamo A, Dubois JL, Millet JMM (2005) Catal Commun 6:215–220

    Article  CAS  Google Scholar 

  19. Wang SY, Chen KM, Li L, Guo XH (2013) Biomacromol 14:818–827

    Article  CAS  Google Scholar 

  20. Henzler K, Wittemann A, Breininger E, Ballauff M, Rosenfeldt S (2007) Biomacromol 8:3674–3681

    Article  CAS  Google Scholar 

  21. Wang SY, Chen KM, Kayitmazer AB, Li L, Guo X (2013) Colloids Surf B 107:251–256

    Article  CAS  Google Scholar 

  22. Wang WH, Li L, Yu XJ, Han HY, Guo XH (2014) J Polym Sci Part B Polym Phys 52:1681–1688

    Article  CAS  Google Scholar 

  23. Zhu Y, Chen KM, Wang X, Guo XH (2012) Nanotechnology 23:2656011–2656019

    Google Scholar 

  24. Henzler K, Haupt B, Rosenfeldt S, Harnau L, Narayanan T, Ballauff M (2011) Phys Chem Chem Phys 13:17599–17605

    Article  CAS  PubMed  Google Scholar 

  25. Schrinner M, Ballauff M, Talmon Y, Kauffmann Y, Thun J, Moller M, Breu J (2009) Science 323:617–620

    Article  CAS  PubMed  Google Scholar 

  26. Wu S, Kaiser J, Guo XH, Li L, Lu Y, Ballauff M (2012) Ind Eng Chem Res 51:5608–5614

    Article  CAS  Google Scholar 

  27. Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M (2010) J Phys Chem C 114:8814–8820

    Article  CAS  Google Scholar 

  28. Wang WH, Li L, Han HY, Tian YC, Zhou Z, Guo XH (2015) Colloid Polym Sci 293:2789–2798

    Article  CAS  Google Scholar 

  29. Rosenfeldt S, Wittemann A, Ballauff M, Breininger E, Bolze J, Dingenouts N (2004) Phys Rev E 70:0614031–0614039

    Article  Google Scholar 

  30. Guinier A, Fournet G (1955) Small-angle scattering of X-rays. John Wiley and Sons, New York

    Google Scholar 

  31. Wang WH, Chu FF, Li L, Han HY, Tian YC, Wang YW, Yuan ZY, Zhou ZM, Guo XH (2016) J Polym Sci Part B Polym Phys 54:405–413

    Article  CAS  Google Scholar 

  32. Robillard Q, Guo XH, Ballauff M, Narayanan T (2000) Macromolecules 33:9109–9114

    Article  Google Scholar 

  33. Wang WH, Li L, Henzler K, Lu Y, Wang JY, Han HY, Tian YC, Wang YW, Zhou ZM, Lotze G, Narayanan T, Ballauff M, Guo XH (2017) Biomacromol 18:1574–1581

    Article  CAS  Google Scholar 

  34. Yakubovich MN, Simonstev VI, Vytnov GF, Luiksar LS, Lasareva NP, Yaremenko EI, Telipko VA, Kholyavenko KM (1984) Appl Catal 10:297–302

    Article  CAS  Google Scholar 

  35. Zhai Z, Wütschert M, Licht RB, Bell AT (2015) Catal Today 261:146–153

    Article  Google Scholar 

  36. Cremer UD, Raichle AD, Rosowski FD, Hammon UD, Müller-Engel KJD (2008) German Patent, 2008, DE 102007010422.

  37. Kaposi M, Cokoja M, Hutterer CH, Hauser SA, Kaposi T, Klappenberger F (2015) Kühn FE 44:15976–15983

    CAS  Google Scholar 

  38. Popova GY, Andrushkevich TV, Dovlitova LS, Aleshina GA, Chesalov YA, Ishenko AV, Ishenko EV, Plyasova LM, Malakhov VV, Khramov MI (2009) Appl Catal A 353(249):257

    Google Scholar 

  39. Botella P, López Nieto JM, Solsona B, Mifsud A, Márquez F (2002) J Catal 209:445–455

    Article  CAS  Google Scholar 

  40. Guan J, Xu H, Song K, Liu B, Shang F, Yu X, Kan Q (2008) Catal Lett 126:293–300

    Article  CAS  Google Scholar 

  41. Guliants VV, Bhandari R, Swaminathan B, Vasudevan VK, Brongersma HH, Knoester A, Gaffney AM (2005) J Phys Chem B 109:24046–24055

    Article  CAS  PubMed  Google Scholar 

  42. Plyasova LM, Solovyeva LP, Kryukova GN, Andrushkevich TV (1990) Kinet Katal 32:1430

    Google Scholar 

  43. Plyasova LM, Solovyeva LP, Tsybulya SV (1991) Zh Strukt Khim 32:110

    CAS  Google Scholar 

  44. Wu QH, Thißen A, Jaegermann W (2004) Surf Sci 236:473–478

    Article  CAS  Google Scholar 

  45. Patterson TA, Carver JC, Leyden DE, Hercules DM (1976) J Phys Chem 80:1700–1708

    Article  CAS  Google Scholar 

  46. Okamoto Y, Oh-Hiraki K, Imanaka T, Teranishi S (1981) J Catal 71:99–110

    Article  CAS  Google Scholar 

  47. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Eden Prairie

    Google Scholar 

  48. Arnoldy P, de Jonge JCM, Moulijin JA (1985) J Phys Chem 89:4517–4527

    Article  CAS  Google Scholar 

  49. Nguyen LD, Loridant S, Launay H, Pigamo A, Dubois JL, Millet JMM (2006) J Catal 237:38–48

    Article  CAS  Google Scholar 

  50. Grasselli RK, Oyama ST, Gaffney AM, Lyons JE (1997) Proceeding of the 3rd world congress on oxidation catalysis. Studies in Surface Science and Catalysis, San Diego

    Google Scholar 

  51. Jiang HC, Lu WM, Wan HL (2004) Chin Chem Lett 15:977–980

    CAS  Google Scholar 

  52. Arena F, Parmaliana A (1996) J Phys Chem 100:19994–20005

    Article  CAS  Google Scholar 

  53. Parmaliana A, Arena F, Frusteri F (1997) Stud Surf Sci Catal 110:347–356

    Article  CAS  Google Scholar 

  54. Bonareva VM, Andrushkevich TV, Paukshtis EA (1986) React Kinet Catal Lett 32:371–376

    Article  Google Scholar 

  55. Ruiz P, Delmon B (1991) Stud Surf Sci Catal 72:91–100

    Google Scholar 

  56. Andrushkevich TV (1993) Catalysis Reviews 35:213–259

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Xu, W., Song, W. et al. Novel Mo-V Oxide Catalysts with Nanospheres as Templates for the Selective Oxidation of Acrolein to Acrylic Acid. Catal Lett 151, 2326–2338 (2021). https://doi.org/10.1007/s10562-020-03457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03457-9

Keywords

Navigation