Skip to main content
Log in

Surface texturing of Mo–V–Te–Nb–O x selective oxidation catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

The paper concentrates on the study of Mo–V–Te–Nb oxide mixtures by electron microscopy combined with catalytic investigation of these materials in the partial oxidation of propane. Surface texturing of catalyst particles composed of two phases referred to in the literature as M1 and M2 is revealed by high-resolution transmission electron microscopy of high performing catalysts. The chemical composition of the catalyst surface is modified by treatment in water to obtain a significant increment in yield of acrylic acid. A chemical realization of the site isolation concept recurring on a supramolecular arrangement of catalyst and reactant rather than on atomic site isolation is suggested. A complex Mo–V–Te–Nb–O x precursor phase carries nanoparticles made from a network of oxoclusters active as catalyst for the conversion of propane to acrylic acid. The designed synthesis of the multi-element oxide bulk and of the surface structure with a different composition than the precursor phase improved the performance by a factor of 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Haber E. Lalik (1997) Catal. Today 33 119 Occurrence Handle1:CAS:528:DyaK28XnsFaltr4%3D Occurrence Handle10.1016/S0920-5861(96)00107-1

    Article  CAS  Google Scholar 

  2. M.M. Lin (2003) Appl. Catal. A 250 305 Occurrence Handle1:CAS:528:DC%2BD3sXntVersLY%3D Occurrence Handle10.1016/S0926-860X(03)00257-6

    Article  CAS  Google Scholar 

  3. B. Grzybowska (2002) Top. Catal. 21 35 Occurrence Handle10.1023/A:1020547830167

    Article  Google Scholar 

  4. R.K. Grasselli (2002) Top. Catal. 21 79 Occurrence Handle1:CAS:528:DC%2BD38Xnslejsr0%3D Occurrence Handle10.1023/A:1020556131984

    Article  CAS  Google Scholar 

  5. M.M. Lin (2001) Appl. Catal. A 207 1 Occurrence Handle1:CAS:528:DC%2BD3MXpt1ahtw%3D%3D Occurrence Handle10.1016/S0926-860X(00)00609-8

    Article  CAS  Google Scholar 

  6. R.K. Grasselli (2005) Catal. Today 99 23 Occurrence Handle1:CAS:528:DC%2BD2MXit1Crsbg%3D Occurrence Handle10.1016/j.cattod.2004.09.021

    Article  CAS  Google Scholar 

  7. J.M. Oliver J.M. Lopez Nieto P. Botella A. Mifsud (2004) Appl. Catal. A 257 67 Occurrence Handle1:CAS:528:DC%2BD2cXisFOgsg%3D%3D Occurrence Handle10.1016/S0926-860X(03)00632-X

    Article  CAS  Google Scholar 

  8. S. Knobl G.A. Zenkovets G.N. Kryukova O. Ovsitser D. Niemeyer R. Schlögl G. Mestl (2003) J. Catal. 215 177 Occurrence Handle1:CAS:528:DC%2BD3sXjvVCntr4%3D Occurrence Handle10.1016/S0021-9517(03)00006-X

    Article  CAS  Google Scholar 

  9. P. DeSanto SuffixJr. D.J. Buttrey R.K. Grasselli C.G. Lugmair A.F. Volpe SuffixJr. B.H. Toby T. Vogt (2004) Z. Kristallogr. 219 152 Occurrence Handle1:CAS:528:DC%2BD2cXks1Clt7Y%3D Occurrence Handle10.1524/zkri.219.3.152.29091

    Article  CAS  Google Scholar 

  10. M. Hatano and A. Kayou, European Patent No. 318,295 (1988)

  11. M. Hatano and A. Kayou, US Patent No. 5,049,692 (1991)

  12. T. Uchikubo, H. Nakamura, Y. Koyasu and S. Wajiki, US Patent No. 5,380,933 (1995)

  13. H. Hinago, S. Komada and A.K. Kogyo, US Patent No. 6,063,728 (2000)

  14. G. Ketteler W. Weiss W. Ranke R. Schlögl (2001) Phys. Chem. Chem. Phys. 3 1114 Occurrence Handle1:CAS:528:DC%2BD3MXhs1egtb4%3D Occurrence Handle10.1039/b009288f

    Article  CAS  Google Scholar 

  15. B. Tepper B. Richter A.-C. Dupuis H. Kuhlenbeck C. Hucho P. Schilbe M.A. Bin Yarmo H.-J. Freund (2002) Surf. Sci. 496 64 Occurrence Handle1:CAS:528:DC%2BD3MXptFCmt74%3D Occurrence Handle10.1016/S0039-6028(01)01607-7

    Article  CAS  Google Scholar 

  16. H. Over Y.D. Kim A.P. Seitsonen S. Wendt E. Lundgren M. Schmid P. Varga A. Morgante G. Ertl (2000) Science 287 1474 Occurrence Handle1:CAS:528:DC%2BD3cXhsV2qt7g%3D Occurrence Handle10.1126/science.287.5457.1474

    Article  CAS  Google Scholar 

  17. H. Werner O. Timpe D. Herein Y. Uchida N. Pfänder U. Wild R. Schlögl H. Hibst (1997) Catal. Lett. 44 153 Occurrence Handle1:CAS:528:DyaK2sXkvFCnt7g%3D Occurrence Handle10.1023/A:1018901830923

    Article  CAS  Google Scholar 

  18. A. Müller, P. Kogerler and C. Kuhlmann, Chem. Commun. (1999) 1347

  19. A. Müller A. Beckmann H. Bögge M. Schmidtmann A. Dress (2002) Angew. Chem. Int. Ed. 114 1210 Occurrence Handle10.1002/1521-3757(20020402)114:7<1210::AID-ANGE1210>3.0.CO;2-4

    Article  Google Scholar 

  20. A. Bielański M. Najbar (1997) Appl. Catal. A 157 223 Occurrence Handle10.1016/S0926-860X(97)00018-5

    Article  Google Scholar 

  21. R. Schlögl S.B.A. Hamid (2004) Angew. Chem. Int. Ed. 43 1628 Occurrence Handle10.1002/anie.200301684

    Article  Google Scholar 

  22. D. Briggs M.P. Seah (1990) Practical Surface Analysis Wiley New York

    Google Scholar 

  23. G. Mestl (2002) J. Raman Spectrosc. 33 333 Occurrence Handle1:CAS:528:DC%2BD38XktFCns70%3D Occurrence Handle10.1002/jrs.843

    Article  CAS  Google Scholar 

  24. P. DeSanto SuffixJr. D.J. Buttrey R.K. Grasselli C.G. Lugmair A.F. Volpe B.H. Toby T. Vogt (2003) Top. Catal. 23 23 Occurrence Handle1:CAS:528:DC%2BD3sXls1SmtLg%3D Occurrence Handle10.1023/A:1024812101856

    Article  CAS  Google Scholar 

  25. P. Mars D.W. Krevelen Particlevan (1954) Chem. Eng. Sci. 3 41 Occurrence Handle1:CAS:528:DyaG28Xks1Wq

    CAS  Google Scholar 

  26. B. Szymanic R.G. Buckley H.J. Trodahl R.L. Davis (1999) Solid State Ionics 109 223 Occurrence Handle10.1016/S0167-2738(98)00087-3

    Article  Google Scholar 

  27. Y. Lui J.Y. Lee L. Hong (2004) J. Power Sources 129 303 Occurrence Handle10.1016/j.jpowsour.2003.11.026

    Article  Google Scholar 

  28. K. Reuter C. Stampfl M.V. Ganduglia-Pirovano M. Scheffler (2002) Chem. Phys. Lett. 352 311 Occurrence Handle1:CAS:528:DC%2BD38XhtVSrsL0%3D Occurrence Handle10.1016/S0009-2614(01)01472-5

    Article  CAS  Google Scholar 

  29. J.B. Wagner S.B. Abd Hamid D. Othman O. Timpe S. Knobl D. Niemeyer D.S. Su R. Schlögl (2004) J. Catal. 225 78 Occurrence Handle1:CAS:528:DC%2BD2cXksVantrw%3D Occurrence Handle10.1016/j.jcat.2004.03.041

    Article  CAS  Google Scholar 

  30. G.J. Hutchings C.J. Kiely M.T. Sananes-Schulz A. Burrows J.-C. Volta (1998) Catal. Today 40 273 Occurrence Handle1:CAS:528:DyaK1cXis1Wrtr8%3D Occurrence Handle10.1016/S0920-5861(98)00015-7

    Article  CAS  Google Scholar 

  31. F.J.C. Sanchez J.A. Lopez-Sanchez R.P. Wells C. Rodes A.-Z. Isfahani G.J. Hutchings (2001) Catal. Lett. 77 189 Occurrence Handle1:CAS:528:DC%2BD38XjtlCiug%3D%3D Occurrence Handle10.1023/A:1013261219256

    Article  CAS  Google Scholar 

  32. C.J. Kiely A. Burrows S. Sajip G.J. Hutchings M.T. Sananes A. Tuel C.-J. Volta (1996) J. Catal. 162 31 Occurrence Handle1:CAS:528:DyaK28XlsVGnsrc%3D Occurrence Handle10.1006/jcat.1996.0257

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Trunschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, J.B., Timpe, O., Hamid, F.A. et al. Surface texturing of Mo–V–Te–Nb–O x selective oxidation catalysts. Top Catal 38, 51–58 (2006). https://doi.org/10.1007/s11244-006-0070-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0070-1

Keywords

Navigation