Skip to main content
Log in

Exploring N-Containing Compound Catalyst for H2S Selective Oxidation: Case Study of TaON and Ta3N5

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In addition to traditional metal oxides, N-containing compound would become efficient catalyst for H2S selective oxidation. TaON and Ta3N5, taking as examples, with porous structure are able to selectively oxidize H2S into sulfur. TaON exhibits ca. 99% H2S conversion and ca. 89% sulfur selectivity at 250 ℃, while Ta3N5 exhibits near complete H2S conversion (~ 100%) and 86% sulfur selectivity at 250 ℃. TaON of lower N content shows higher sulfur selectivity (~ 90–100%) above 130 ℃, compared with that (~ 86–95%) over Ta3N5. Whereas, Ta3N5 of higher N content demonstrates higher H2S conversion (~ 30–40%) below 160 ℃, compared with that (~ 6–30%) over TaON. Temperature programmed desorption results show that Ta3N5 owns larger amount of acid sites and weaker basic sites than TaON. Over Ta3N5, the reactant molecules could dissociatively adsorb on acid sites more frequently and could be easier to move across the weaker basic sites, thus increasing probability for reaction at low temperature. Manipulating both cations and anions in N-containing compound can alter surface property for optimization of selective H2S oxidation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. BP Statistical Review of World Energy (2019) 68th edition.

  2. Wu J, Liu D, Zhou W, Liu Q, Huang Y (2018) High-temperature H2S removal from IGCC coarse gas, Shanghai Jiao Tong University Press and Springer Nature Singapore PTE Ltd..

  3. Ozekmekci M, Salkic G, Ferdi Fellah M (2015) Fuel Process Technol 139:49

    CAS  Google Scholar 

  4. Cheah S, Carpenter DL, Magrini-Bair KA (2009) Energy Fuels 23:5291

    CAS  Google Scholar 

  5. Wang L, Yang RT (2014) Front Chem Sci Eng 8:8

    CAS  Google Scholar 

  6. Zhang X, Tang Y, Qu S, Da J, Hao Z (2015) ACS Catal 5:1053

    CAS  Google Scholar 

  7. Kohl AL, Nielsen RB (1997) Gas purification, 5th edn. Elsevier Inc., New York

    Google Scholar 

  8. Speight JG (2008) Natural gas: a basic handbook. Gulf Publishing Company, Cambridge

    Google Scholar 

  9. Dolan MD, Ilyushechkin AY, McLennan KG, Sharma Sunil D (2012) Asia-Pac J Chem Eng 7:1

    CAS  Google Scholar 

  10. Tsuchiya K, Kamiya K, Matsui H (1997) Int J Chem Kinet 29:57

    CAS  Google Scholar 

  11. Liang S, Liu F, Jiang L (2020) Curr Opin Green Sust 25:100361

    Google Scholar 

  12. Rajendran A, Cui T, Fan H, Yang Z, Feng J, Li W (2020) J Mater Chem A 8:2246

    CAS  Google Scholar 

  13. Terörde RJAM, van den Brink PJ, Visser LM, van Dillen AJ, Geus JW (1993) Catal Today 17:217

    Google Scholar 

  14. Mehmet Tasdemir H, Yasyerli S, Yasyerli N (2015) Int J Hydrogen Energy 40:9989

    Google Scholar 

  15. Mehmet Tasdemir H, Yagizatli Y, Yasyerli S, Yasyerli N, Dogu G (2019) Can J Chem Eng 97:3125

    Google Scholar 

  16. Cecilia J, Soriano M, Natoli A, Rodriguez-Castellon E, Nieto J (2018) Material 11:1562

    Google Scholar 

  17. Zheng X, Fang Z, Dai Z, Cai J, Shen L, Zhang Y, Au C, Jiang L (2020) Inorg Chem 59:4483

    CAS  PubMed  Google Scholar 

  18. Zheng X, Zhang L, Fan Z, Cao Y, Shen L, Au C, Jiang L (2019) Chem Eng J 374:793

    CAS  Google Scholar 

  19. Zhang X, Wang Z, Tang Y, Qiao N, Li Y, Qu S, Hao Z (2015) Catal. Sci Technol 5:4991

    CAS  Google Scholar 

  20. Adib F, Bagreev A, Bandosz TJ (2000a) Environ Sci Technol 34:686

    CAS  Google Scholar 

  21. Wu G, Wang X, Wei W, Sun Y (2010) Appl Catal A 377:107

    CAS  Google Scholar 

  22. Zhang F, Zhang X, Hao Z, Jiang G, Yang H, Qu S (2018) J Hazard Mater 342:749

    CAS  PubMed  Google Scholar 

  23. Zhang F, Zhang X, Jiang G, Li N, Hao Z, Qu S (2018) Chem Eng J 348:831

    CAS  Google Scholar 

  24. Liu Y, Duong-Viet C, Luo J, Hébraud A, Schlatter G, Ersen O, Nhut JM, Pham-Huu C (2015) ChemCatChem 7:2957

    CAS  Google Scholar 

  25. Gao J, Ma N, Zheng Y, Zhang J, Gui J, Guo C, An H, Tan X, Yin Z, Ma D (2017) ChemCatChem 9:1601

    CAS  Google Scholar 

  26. Xu Z, Li WC, Yan YD, Wang HY, Zhu H, Zhao MM, Yan SC, Zou ZG (2018) ACS Appl Mater Interfaces 10:22102

    CAS  PubMed  Google Scholar 

  27. Adib F, Bagreev A, Bandosz TJ (2000b) Langmuir 16:1980

    CAS  Google Scholar 

  28. Sun F, Liu J, Chen H, Zhang Z, Qiao W, Long D, Ling L (2013) ACS Catal 3:862

    CAS  Google Scholar 

  29. Zheng XX, Shen LJ, Chen XP, Zheng XH, Au CT, Jiang LL (2018) Inorg Chem 57:10081

    CAS  PubMed  Google Scholar 

  30. Fang T, Huang H, Feng J, Hu Y, Guo Y, Zhang S, Li Z, Zou Z (2018) Sci Bull 63:1404

    CAS  Google Scholar 

  31. Shen L, Lei G, Fang Y, Cao Y, Wang X, Jiang L (2018) Chem Commun 54:2475

    CAS  Google Scholar 

  32. Kim YI, Woodward PM, Baba-Kishi KZ, Tai CW (2004) Chem Mater 16:1267

    CAS  Google Scholar 

  33. Feng J, Huang H, Yan S, Luo W, Yu T, Li Z, Zou Z (2020) Nano Today 30:100830

    CAS  Google Scholar 

  34. Wang Y, Wei S, Xu X (2020) Appl Catal B 263:118315

    CAS  Google Scholar 

  35. Lerch M, Janekb J, Becker KD, Berendts S, Boysen H, Bredow T, Dronskowski R, Ebbinghaus SG, Kilo M, Lumey MW, Martin M, Reimann C, Schweda E, Valov I, Wiemhöfer HD (2009) Prog Solid State Chem 37:81

    CAS  Google Scholar 

  36. Ebbinghaus SG, Abicht HP, Dronskowski R, Müller T, Reller A, Weidenkaff A (2009) Prog Solid State Chem 37:173

    CAS  Google Scholar 

  37. Orhan E, Tessier F, Marchand R (2002) Solid State Sci 4:1071

    CAS  Google Scholar 

  38. Liao M, Feng J, Luo W, Zhang J, Li Z, Yu T, Zou Z (2012) Adv Funct Mater 22:3066

    CAS  Google Scholar 

  39. Feng J, Huang H, Fang T, Wang X, Yan S, Luo W, Yu T, Zhao Y, Li Z, Zou Z (2019) Adv Funct Mater 29:1808389

    Google Scholar 

  40. Shen L, Zheng X, Lei G, Li X, Cao Y, Jiang L (2018) Chem Eng J 346:238

    CAS  Google Scholar 

  41. Momma K, Izumi F (2011) J Appl Crystallogr 44:1272

    CAS  Google Scholar 

  42. Nurlaela E, Harb M, del Gobbo S, Vashishta M, Takanabe K (2015) J Solid State Chem 229:219

    CAS  Google Scholar 

  43. Condon JB (2006) Surface area and porositydeterminations by physisorptionmeasurements and theory. Elsevier, Amsterdam

    Google Scholar 

  44. Ghosh T, Nair N (2015) Surf Sci 635:19

    CAS  Google Scholar 

  45. Wang JJ, Jiang YQ, Ma AB, Jiang JH, Chen JH, Li MX, Feng JY, Li ZS, Zou ZG (2019) Appl Catal B 244:502

    CAS  Google Scholar 

  46. Wang J, Ma A, Li Z, Jiang J, Feng J, Zou Z (2016) Phys Chem Chem Phys 18:7938

    CAS  PubMed  Google Scholar 

  47. Adib F, Bagreev A, Bandosz TJ (1999) J Colloid Interface Sci 216:360

    CAS  PubMed  Google Scholar 

  48. Lu L, Wang B, Wang S, Shi Z, Yan S, Zou Z (2017) Adv Funct Mater 27:1702447

    Google Scholar 

  49. Feng J, Luo W, Fang T, Lv H, Wang Z, Gao J, Liu W, Yu T, Li Z, Zou Z (2014) Adv Funct Mater 24:3535

    CAS  Google Scholar 

  50. Wang X, Huang H, Hao W, Li Z, Zou Z (2017) J Phys Chem C 121:6864

    CAS  Google Scholar 

  51. Fang T, Huang H, Feng J, Hu Y, Qian Q, Yan S, Yu Z, Li Z, Zou Z (2019) Research 2019:9282674

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang H, Feng J, Fu H, Zhang B, Fang T, Qian Q, Huang Y, Yan S, Tang J, Li Z, Zou Z (2018) Appl Catal B 226:111

    CAS  Google Scholar 

  53. Wang J, Ma A, Li Z, Jiang J, Chen J, Zou Z (2017) J Mater Chem A 5:6966

    CAS  Google Scholar 

  54. Pei L, Lv B, Wang S, Fan G, Xu Z, Wang X, Wang X, Yu Z, Yan S, Abe R, Zou Z (2018) ACS Appl Energy Mater 1:4150

    CAS  Google Scholar 

  55. Zhang N, Wang X, Feng J, Huang H, Guo Y, Li Z, Zou Z (2020) Natl Sci Rev 7:1059

    Google Scholar 

  56. Gao H, Zhao M, Yan S, Zhou P, Li Z, Zou Z, Liu Q (2016) RSC Adv 6:86240

    CAS  Google Scholar 

  57. Shi H, Chen G, Zou Z (2014) Appl Catal B 156–157:378

    Google Scholar 

Download references

Acknowledgements

The authors thank financial support from National Key Research and Development Program of China [No 2018YFA0209303], National Natural Science Foundation of China [Nos.: U1663228, 21473090 and 51902153], a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We thank Mr. T. Chen in College of Engineering and Applied Sciences at Nanjing University for his assistance in sample fabrication and characterization. We thank Prof. S. Liang and Dr. X. Liu in National Engineering Research Center of Chemical Fertilizer Catalyst at Fuzhou University for fruitful discussion and their assistance in evaluation of H2S selective oxidation over the catalysts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lilong Jiang or Zhaosheng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Shen, L., Yang, S. et al. Exploring N-Containing Compound Catalyst for H2S Selective Oxidation: Case Study of TaON and Ta3N5. Catal Lett 151, 1728–1737 (2021). https://doi.org/10.1007/s10562-020-03430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03430-6

Keywords

Navigation