Skip to main content
Log in

Effect of Tourmaline Addition on the Catalytic Performance and SO2 Resistance of NixMn3−xO4 Catalyst for NH3-SCR Reaction at Low Temperature

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

NixMn3−xO4 and NixMn3−xO4/T (T represents tourmaline) catalysts with a double-layer hollow structure were prepared by a rigid template method for low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). The catalytic activity and SO2 tolerance performance of NixMn3−xO4 catalyst were enhanced by the addition of 2 wt% tourmaline. The results showed the addition of tourmaline could affect the growth, shell thickness and redox property of the NixMn3−xO4 catalysts. The relative contents of Mn4+ and surface chemical oxygen were also increased by the addition of tourmaline, which were beneficial for improving the SCR activity, the catalyst showed 100% NO conversion in a low-temperature range of 125–240 °C. The mechanism of SCR reaction and SO2 tolerance were analyzed by In-situ DRIFTS. The SCR reaction process mostly follows Langmuir–Hinshelwood (L–H) mechanisms. The primary NOx adsorption materials on NixMn3−xO4/T catalyst were nitrate bidentate and bridge nitrate, which was not affected by SO2, and it had excellent SO2 tolerance at 150 ℃.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li X, Zhang C, Zhang XP et al (2018) Chem Eng J 335:483–490

    Article  CAS  Google Scholar 

  2. Wang JH, Zhao HW, Haller G et al (2017) Appl Catal B 202:346–354

    Article  CAS  Google Scholar 

  3. Yan LJ, Wang FL, Wang PL et al (2020) Environ Sci Technol 54(12):7697–7705

    Article  CAS  PubMed  Google Scholar 

  4. Ye D, Qu RY, Liu SJ et al (2019) ACS Omega 4(3):4927–4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang SL, Zhong Q (2015) J Solid State Chem 221:49–56

    Article  CAS  Google Scholar 

  6. Xu LW, Wang CZ, Chang HZ et al (2018) Environ Sci Technol 52(12):7064–7071

    Article  CAS  PubMed  Google Scholar 

  7. Han LP, Gao M, Hasegawa JY et al (2019) Environ Sci Technol 53(11):6462–6473

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Li XS, Zhu TL et al (2018) Environ Sci Technol 52:8578–8587

    Article  CAS  PubMed  Google Scholar 

  9. Zheng L, Zhou MJ, Huang ZW et al (2016) Environ Sci Technol 50:11951–11956

    Article  CAS  PubMed  Google Scholar 

  10. Shu Z, Huang WM, Hua ZL et al (2013) J Mater Chem A 1:10218–10227

    Article  CAS  Google Scholar 

  11. Husnain N, Wang E, Fareed S et al (2019) Catalysts 9(12):1018

    Article  CAS  Google Scholar 

  12. Wan YP, Zhao WR, Tang Y et al (2014) Appl Catal B 148:114–122

    Article  CAS  Google Scholar 

  13. Liu Y, Xu J, Li HR et al (2015) J Mater Chem A 3(21):11543–11553

    Article  CAS  Google Scholar 

  14. Zhang L, Zhang DS, Zhang JP et al (2013) Nanoscale 5(20):9821–9829

    Article  CAS  PubMed  Google Scholar 

  15. Zhu DB, Liang JS, Li FP et al (2006) J Rare Earth 24(1):277–280

    Article  Google Scholar 

  16. Wang SF, Xue G, Liang JS et al (2014) J Rare Earth 32(9):855–859

    Article  CAS  Google Scholar 

  17. Li MM, Gui P, Zheng LN et al (2018) Catalyst 8(4):125

    Article  CAS  Google Scholar 

  18. Zhao GY, Li MM, Wang LY et al (2020) Catal Today 355:385–396

    Article  CAS  Google Scholar 

  19. Diez A, Schmidt R, Sagua AE et al (2010) J Eur Ceram Soc 30(12):2617–2624

    Article  CAS  Google Scholar 

  20. Tang XL, Hao JM, Xu WG et al (2007) Catal Commun 8(3):329–334

    Article  CAS  Google Scholar 

  21. Yu CL, Hou D, Huang BC et al (2020) J Hazard Mater 399:123011

    Article  CAS  PubMed  Google Scholar 

  22. Yan R, Lin SX, Li YL et al (2020) J Hazard Mater 396:122592

    Article  CAS  PubMed  Google Scholar 

  23. Xu D, Wu WH, Wang PL et al (2020) J Hazard Mater 399:122947

    Article  CAS  PubMed  Google Scholar 

  24. Wang ZY, Guo RT, Shi X et al (2019) Chem Eng J 381:122753

    Article  CAS  Google Scholar 

  25. Yu R, Zhao Z, Shi C et al (2019) J Phys Chem C 123(4):2216–2227

    Article  CAS  Google Scholar 

  26. France LJ, Yang Q, Li W et al (2017) Appl Catal B 206:203–215

    Article  CAS  Google Scholar 

  27. Wang SX, Guo RT, Pan WG et al (2017) Phys Chem Chem Phys 19(7):5333–5342

    Article  CAS  PubMed  Google Scholar 

  28. Chen L, Li J, Ge M et al (2010) Catal Today 153(3–4):77–83

    Article  CAS  Google Scholar 

  29. Cao F, Su S, Xiang J et al (2015) Fuel 139:232–239

    Article  CAS  Google Scholar 

  30. Yao X, Kong T, Yu S et al (2017) Appl Surf Sci 402:208–217

    Article  CAS  Google Scholar 

  31. Xu Q, Fang ZL, Chen YY et al (2020) Environ Sci Technol 54(4):2530–2538

    Article  CAS  PubMed  Google Scholar 

  32. Wang F, Xie ZB, Liang JS et al (2019) Environ Sci Technol 53(12):6989–6996

    Article  CAS  PubMed  Google Scholar 

  33. Yan LJ, Liu YY, Zha KW et al (2017) ACS App Mater Inter 9(3):2581–2593

    Article  CAS  Google Scholar 

  34. Cai SX, Zhang DS, Shi LY et al (2014) Nanoscale 6(13):7346–7353

    Article  CAS  PubMed  Google Scholar 

  35. Kang L, Han LP, He JB et al (2019) Environ Sci Technol 53(2):938–945

    Article  CAS  PubMed  Google Scholar 

  36. Xu WJ, Zhang GX, Chen HW et al (2018) Chin J Catal 39(1):118–127

    Article  CAS  Google Scholar 

  37. Ma Z, Wu XD, Harelind H et al (2016) J Mol Catal A 423:172–180

    Article  CAS  Google Scholar 

  38. Cao F, Xiang J, Su S et al (2015) Fuel Process Technol 135:66–72

    Article  CAS  Google Scholar 

  39. Liu J, Guo RT, Li MY et al (2018) Fuel 223:385–393

    Article  CAS  Google Scholar 

  40. Wang B, Wang MX, Han L et al (2020) ACS Catal 10:9034–9045

    Article  CAS  Google Scholar 

  41. Xiong Y, Tang CJ, Yao XJ et al (2015) Appl Catal A 495:206–216

    Article  CAS  Google Scholar 

  42. Lee KJ, Kumar PA, Maqbool MS et al (2013) Appl Catal B 142:705–717

    Article  CAS  Google Scholar 

  43. Jin RB, Liu Y, Wang Y et al (2014) Appl Catal B 148:582–588

    Article  CAS  Google Scholar 

  44. Han LP, Gao M, Feng C et al (2019) Environ Sci Technol 53(10):5946–5956

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Wang D, Liu Y et al (2014) Appl Catal B 156:371–377

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work described above was financially supported by National Natural Science Foundation of China (Grant No. U20A20132).

Author information

Authors and Affiliations

Authors

Contributions

Methodology: LW, PG, YS; Formal analysis and investigation: LW, CG, GX; Writing—original draft preparation: LW, PG; Funding acquisition: GX; Supervision: LW, YS, CG.

Corresponding author

Correspondence to Gang Xue.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Gui, P., Shen, Y. et al. Effect of Tourmaline Addition on the Catalytic Performance and SO2 Resistance of NixMn3−xO4 Catalyst for NH3-SCR Reaction at Low Temperature. Catal Lett 151, 3404–3416 (2021). https://doi.org/10.1007/s10562-021-03585-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03585-w

Keywords

Navigation