Skip to main content
Log in

Selective Aerobic Oxidation of Secondary C (sp3)-H Bonds with NHPI/CAN Catalytic System

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The direct aerobic oxidation of secondarty C(sp3)-H bonds was achieved in the presence of N-hydroxyphthalimide (NHPI) and cerium ammonium nitrate (CAN) under mild conditions. Various benzylic methylenes could be oxidized to carbonyl compounds in satisfied selectivity while saturated cyclic alkanes could be further oxidized to the corresponding lactones with the catalytic system. Remarkably, 25% of isochroman was converted to corresponding ketone with a selectivity of 96%. The reaction was initiated by hydrogen atom abstraction from NHPI by cerium and nitrates under oxygen atmosphere to form PINO radicals. 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) addition experiments showed that the oxidation proceeded via a complex radical chain mechanism and an ion pathway.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stahl SS (2005) Palladium-catalyzed oxidation of organic chemicals with O2. Science 309:1824–1826. https://doi.org/10.1002/chin.200703220

    Article  CAS  PubMed  Google Scholar 

  2. Frei H (2006) Selective oxidation of hydrocarbons in zeolites. Science 313:309–310. https://doi.org/10.1002/chin.200703220

    Article  CAS  PubMed  Google Scholar 

  3. Recupero F, Punta C (2007) Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chem Rev 107:3800–3842. https://doi.org/10.1002/chin.200751236

    Article  CAS  PubMed  Google Scholar 

  4. Sterckx H, Morel B, Maes BUW (2019) Catalytic aerobic oxidation of C(sp(3) )-H bonds. Angew Chem Int Ed 58:7946–7970. https://doi.org/10.1002/anie.201804946

    Article  CAS  Google Scholar 

  5. Kawamata Y, Yan M, Liu Z, Bao DH, Chen J, Starr JT, Baran PS (2017) Scalable, electrochemical oxidation of unactivated C-H bonds. J Am Chem Soc 139:7448–7451. https://doi.org/10.1021/jacs.7b03539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kesavan L, Tiruvalam R, Rahim MHA, Saiman MIB, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au-Pd alloy nanoparticles. Science 331:195–199. https://doi.org/10.1126/science.1198458

    Article  CAS  PubMed  Google Scholar 

  7. White MC (2012) Adding aliphatic C-H bond oxidations to synthesis. Science 335:807–809. https://doi.org/10.1126/science.1207661

    Article  CAS  PubMed  Google Scholar 

  8. Zhang P, Lu H, Zhou Y, Zhang L, Wu Z, Yang S, Shi H, Zhu Q, Chen Y, Dai S (2015) Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons. Nat Commun 6:8446–8456. https://doi.org/10.1038/ncomms9446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC (2013) Aerobic copper-catalyzed organic reactions. Chem Rev 113:6234–6458. https://doi.org/10.1021/cr300527g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan C, Liang Y, Hernandez T, Berriochoa A, Houk KN, Siegel D (2013) Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism. Nature 499:192–196. https://doi.org/10.1038/nature12284

    Article  CAS  PubMed  Google Scholar 

  11. Fukino T, Joo H, Hisada Y, Obana M, Yamagishi H, Hikima T, Takata M, Fujita N, Aida T (2014) Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 344:495–499. https://doi.org/10.1126/science.1252553

    Article  CAS  Google Scholar 

  12. Liu YJ, Xu H, Kong WJ, Shang M, Dai HX, Yu JQ (2014) Overcoming the limitations of directed C-H functionalizations of heterocycles. Nature 515:389–393. https://doi.org/10.1038/nature13885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS (2016) A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 321:801–805. https://doi.org/10.1126/science.aaf6123

    Article  CAS  Google Scholar 

  14. Sambiagio C, Schonbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnurch M (2018) A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 47:6603–6743. https://doi.org/10.1039/C8CS00201K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen K, Zhang P, Wang Y, Li H (2014) Metal-free allylic/benzylic oxidation strategies with molecular oxygen: recent advances and future prospects. Green Chem 16:2344. https://doi.org/10.1039/c3gc42135j

    Article  CAS  Google Scholar 

  16. Wertz S, Studer A (2013) Nitroxide-catalyzed transition-metal-free aerobic oxidation processes. Green Chem 15:3116. https://doi.org/10.1039/C3GC41459K

    Article  CAS  Google Scholar 

  17. Hruszkewycz DP, Miles KC, Thiel OR, Stahl SS (2017) Co/NHPI-Mediated aerobic oxygenation of benzylic C-H bonds in pharmaceutically relevant molecules. Chem Sci 8:1282–1287. https://doi.org/10.1039/C6SC03831J

    Article  CAS  PubMed  Google Scholar 

  18. Arzumanyan AV, Goncharova IK, Novikov RA, Milenin SA, Boldyrev KL, Solyev PN, Tkachev YV, Volodin AD, Smol'Yakov AF, Korlyukov AA, Muzafarov AM (2018) Aerobic Co or Cu/NHPI-catalyzed oxidation of hydride siloxanes: synthesis of siloxanols. Green Chem 20:1467–1471. https://doi.org/10.1039/C8GC00424B

    Article  CAS  Google Scholar 

  19. Gaster E, Kozuch S, Pappo D (2017) Selective aerobic oxidation of methylarenes to benzaldehydes catalyzed by N-hydroxyphthalimide and cobalt(II) acetate in hexafluoropropan-2-ol. Angew Chem Int Ed Engl 56:5912–5915. https://doi.org/10.1002/ange.201702511

    Article  CAS  PubMed  Google Scholar 

  20. Yadav AK, Yadav LDS (2016) N-hydroxyphthalimide: a new photoredox catalyst for [4+1] radical cyclization of N-methylanilines with isocyanides. Chem Commun 52:10621–10624. https://doi.org/10.1039/c6cc04846c

    Article  CAS  Google Scholar 

  21. Hu Y, Chen L, Li B (2016) NHPI/tert-butyl nitrite: a highly efficient metal-free catalytic system for aerobic oxidation of alcohols to carbonyl compounds using molecular oxygen as the terminal oxidant. Catal Commun 83:82–87. https://doi.org/10.1016/j.catcom.2016.05.017

    Article  CAS  Google Scholar 

  22. Wang L, Wang Y, Du R, Dao R, Yuan H, Liang C, Yao J, Li H (2018) N-hydroxyphthalimide (NHPI) promoted aerobic baeyer-villiger oxidation in the presence of aldehydes. ChemCatChem 10:4947–4952. https://doi.org/10.1002/cctc.201801165

    Article  CAS  Google Scholar 

  23. Tsujimoto S, Iwahama T, Sakaguchi S, Ishii Y (2001) The radical-chain addition of aldehydes to alkenes by the use of N-hydroxyphthalimide (NHPI) as a polarity-reversal catalyst. Chem Commun 22:2352–2353. https://doi.org/10.1039/B107548A

    Article  Google Scholar 

  24. Yang G, Ma Y, Xu J (2004) Biomimetic catalytic system driven by electron transfer for selective oxygenation of hydrocarbon. J Am Chem Soc 126:10542–10543. https://doi.org/10.1021/ja047297b

    Article  CAS  PubMed  Google Scholar 

  25. Ishii Y, Iwahama T, Sakaguchi S, Nakayama K, Nishiyama Y (1996) Alkane oxidation with molecular oxygen using a new efficient catalytic system: N-hydroxyphthalimide (NHPI) combined with Co(acac)n (n = 2 or 3). J Org Chem 61:4520–4526. https://doi.org/10.1002/chin.199647054

    Article  CAS  PubMed  Google Scholar 

  26. Einhorn C, Einhorn J, Marcadal Cl, Pierre J-L (1997) Oxidation of organic substrates by molecular oxygen mediated by N-hydroxyphthalimide (NHPI) and acetaldehyde. Chem Commun 5:447–448. https://doi.org/10.1002/chin.199727056

    Article  Google Scholar 

  27. Wang L, Zhang Y, Du R, Yuan H, Wang Y, Yao J, Li H (2019) Selective one-step aerobic oxidation of cyclohexane to ϵ-caprolactone mediated by N-hydroxyphthalimide (NHPI). ChemCatChem 11:2260–2264. https://doi.org/10.1002/cctc.201900282

    Article  CAS  Google Scholar 

  28. Miao C, Zhao H, Zhao Q, Xia C, Sun W (2016) NHPI and ferric nitrate: a mild and selective system for aerobic oxidation of benzylic methylenes. Catal Sci Technol 6:1378–1383. https://doi.org/10.1039/C5CY01245G

    Article  CAS  Google Scholar 

  29. Sridharan V, Menendez JC (2010) Cerium (Iv) ammonium nitrate as a catalyst in organic synthesis. Chem Rev 110:3805–3849. https://doi.org/10.1021/cr100004p

    Article  CAS  PubMed  Google Scholar 

  30. Ho T-L (1978) Cerium(Iv)-oxidation with a dual oxidant system reaction of some arylmethanols. Synthesis. https://doi.org/10.1002/chin.197915145

    Article  Google Scholar 

  31. Kim SS, Jung HC (2003) An efficient aerobic oxidation of alcohols to aldehydes and ketones with TEMPO/ceric ammonium nitrate as catalysts. Synthesis 2003:2135–2137. https://doi.org/10.1055/s-2003-41065

    Article  CAS  Google Scholar 

  32. Soo Kim S, Rajagopal G (2004) Efficient aerobic oxidation of alcohols to carbonyl compounds with NHPI/CAN catalytic system. Synth Commun 34:2237–2243. https://doi.org/10.1081/scc-120038507

    Article  Google Scholar 

  33. Du R, Yuan H, Yao J, Li H (2019) Oxidation of KA oil to caprolactone with molecular oxygen using N-hydroxyphthalimide-mediated Ce(NH4)2(NO3)6 catalyst. Mol Catal 467:24–29. https://doi.org/10.1016/j.mcat.2019.01.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21573196), the Fundamental Research Funds of the Central Universities, and the National High Technology Research and Development Program (863 Program) of China (Grant No. SS2015AA020601). L. Wang gratefully acknowledge the financial support for this research by the Zhejiang Province Postdoctoral Science Foundation (No. ZJ2020159).

Author information

Authors and Affiliations

Authors

Contributions

LW: Conceptualization, Methodology, Investigation, Formal analysis, Data curation, Writing-Original Draft. YZ: Validation, Formal analysis, Data curation, Writing-Reviewing & Editing. HY: Writing-Reviewing & Editing. RD: Writing-Reviewing & Editing. JY: Writing-Reviewing & Editing, Supervision. HL: Writing-Reviewing & Editing, Supervision.

Corresponding author

Correspondence to Haoran Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Y., Yuan, H. et al. Selective Aerobic Oxidation of Secondary C (sp3)-H Bonds with NHPI/CAN Catalytic System. Catal Lett 151, 1663–1669 (2021). https://doi.org/10.1007/s10562-020-03406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03406-6

Keywords

Navigation