Skip to main content
Log in

Aerobic Selective Oxidation of Cyclohexylbenzene Over Organocatalysis with Pairs of Nitrogenous Hydroxyl Precursors and Anthraquinones

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Selective oxidation of cyclohexylbenzene is a potentially promising process in industrial application. Herein, we reported an organocatalytic system to achieve the selective oxidation of Cα–H bonds in cyclohexylbenzene and transformation of active intermediate Cα peroxide by an oxidation then decomposition method. The pair of N-hydroxyphthalimide and 2-Chlorothraquinone (NHPI/AQ-Cl) as metal-free organic catalysts showed the highest efficient in selective oxidation of cyclohexylbenzene to Cα peroxide and Cα alcohol. And the base modified covalent triazine frameworks could facilitate the Cα peroxide decomposition to the Cα alcohol. Up to 8.8% conversion of substrate and 80% selectivity of 1-phenylcyoclohexanol were achieved under the optimized conditions. This work provided a new organocatalytic strategy to achieve the aerobic selective oxidation of Cα–H bonds in cyclohexylbenzene.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2

Similar content being viewed by others

References

  1. Melone L, Gambarotti C, Prosperini S, Pastori N, Recupero F, Punta C (2011) Adv Synth Catal 353:147–154

    Article  CAS  Google Scholar 

  2. Melone L, Prosperini S, Ercole G, Pastori N, Punta C (2014) J Chem Technol Biotechnol 89:1370–1378

    Article  CAS  Google Scholar 

  3. Schuchardta U, Cardosob D, Pereira R, Pereira R, da Cruzd RS, Guerreiroe MC, Mandellif D, Spinacég EV, Pires EL (2001) Appl Catal A-Gen 211:1–17

    Article  Google Scholar 

  4. Zheng X, Ma J, Wang M, Shi S, Sun Z, Xu J (2017) Catal Commun 101:77–80

    Article  CAS  Google Scholar 

  5. Xia Y, Wen L, Ji G, Gao L, Mu X, Zong B (2016) Petrochem Technol 45:769–774

    CAS  Google Scholar 

  6. Kurganova EA (2016) Koshel’ GN. Russ J Gen Chem 86:1520–1530

    Article  CAS  Google Scholar 

  7. Kurganova EA, Sapunov VN, Koshel GN, Frolova AS (2016) Russ Chem Bull In Ed 65:2115–2128

    Article  CAS  Google Scholar 

  8. Galli C, Gentili P, Lanzalunga O (2008) Angew Chem Int Ed 47:4790–4796

    Article  CAS  Google Scholar 

  9. Hermans I, Vereecken L, Jacobs PA, Peeters J (2004). Chem Commun. https://doi.org/10.1039/b401050g

    Article  Google Scholar 

  10. Talik G, Orlińska B (2021) ChemCatChem 13:4578–4590

    Article  CAS  Google Scholar 

  11. Mahmood S, Xu B, Ren T, Zhang Z, Liu X, Zhang S (2018) Mol Catal 447:90–96

    Article  CAS  Google Scholar 

  12. Recupero F, Punta C (2007) Chem Rev 107:3800–3842

    Article  CAS  PubMed  Google Scholar 

  13. Sheldon RA, Arends IWCE (2004) Adv Synth Catal 346:1051–1071

    Article  CAS  Google Scholar 

  14. Arends IWCE, Sasidharan M, Kuhnle A, Duda M, Jost C, Sheldona RA (2002) Tetrahedron 58:9055–9061

    Article  CAS  Google Scholar 

  15. Aoki Y, Sakaguchi S, Ishii Y (2005) Tetrahedron 61:5219–5222

    Article  CAS  Google Scholar 

  16. Petroselli M, Franchi P, Lucarini M, Punta C, Melone L (2014) Chemsuschem 7:2695–2703

    Article  CAS  PubMed  Google Scholar 

  17. Tan Z, Zhu J, Yang W (2017) Catal Commun 94:60–64

    Article  CAS  Google Scholar 

  18. Yang Y, Ma J, Wu J, Zhu W, Zhang Y (2022) Chin J Chem Eng 44:124–130

    Article  Google Scholar 

  19. Zhang Y, Qin S, Claes N, Schilling W, Sahoo PK, Ching HYV, Jaworski A, Lemière F, Slabon A, Van Doorslaer S, Bals S, Das S (2022) ACS Sustain Chem Eng 10:530–540

    Article  CAS  Google Scholar 

  20. Tong X, Xu J, Miao H (2005) Adv Synth Catal 347:1953–1957

    Article  CAS  Google Scholar 

  21. Wendlandt AE, Stahl SS (2012) Org Lett 14:2580–2583

    Article  Google Scholar 

  22. Kadoh Y, Tashiro M, Oisaki K, Kanai M (2015) Adv Synth Catal 357:2193–2198

    Article  CAS  Google Scholar 

  23. Zhang Z, Gao Y, Liu Y, Li J, Xie H, Li H, Wang W (2015) Org Lett 17:5492–5495

    Article  CAS  PubMed  Google Scholar 

  24. Wertz S, Studer A (2013) Green Chem 15:3116–3134

    Article  CAS  Google Scholar 

  25. Yang G, Ma Y, Xu J (2004) J Am Chem Soc 126:10542–10543

    Article  CAS  PubMed  Google Scholar 

  26. Yang G, Zhang Q, Miao H, Tong X, Xu J (2005) Org Lett 7:263–266

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Q, Xu J, Ma H, Yang G (2006) Sci Technol Eng 6:2870–2871

    Google Scholar 

  28. Osadchii DY, Olivos-Suarez AI, Bavykina AV, Gascon J (2017) Langmuir 33:14278–14285

    Article  CAS  PubMed  Google Scholar 

  29. Zhu G, Shi S, Liu M, Zhao L, Wang M, Zheng X, Gao J, Xu J (2018) ACS Appl Mater Interfaces 10:12612–12617

    Article  CAS  PubMed  Google Scholar 

  30. Wu C, Cheng Y, Wang L, Li X (2019) Chem React Eng Technol 35:492–500

    CAS  Google Scholar 

  31. Sun W, Zhang S, Qiu J, Xu Z, Zhao L (2017) Chem Eng Res Des 124:202–210

    Article  CAS  Google Scholar 

  32. Sun Z, Xu J, Du Z, Zhang W (2007) Appl Catal A-Gen 323:119–125

    Article  CAS  Google Scholar 

  33. López-Ausens T, Boronat M, Concepción P, Chouzier S, Mastroianni S, Corma A (2016) J Catal 344:334–345

    Article  Google Scholar 

  34. Zheng X, Wang M, Ma J, Shi S, Gao J, Xu J (2019) ACS Appl Nano Mater 2:2176–2183

    Article  CAS  Google Scholar 

  35. Bing W, Wei M (2019) J Solid State Chem 269:184–194

    Article  CAS  Google Scholar 

  36. Jambhulkar DK, Ugwekar RP, Bhanvase BA, Barai DP (2022) Chem Eng Commun 209:433–484

    Article  CAS  Google Scholar 

  37. Zhao L, Shi S, Liu M, Zhu G, Wang M, Du W, Gao J, Xu J (2018) Green Chem 20:1270–1279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 21790331 and 22072147), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA21030400). the Youth Innovation Promotion Association, the Chinese Academy of Sciences (2021178), the Dalian Young Star of Science and Technology Project (No. 2019RQ112)

Author information

Authors and Affiliations

Authors

Contributions

JX and SS designed the research. GZ performed the catalytic reaction, established analysis method and completed the paper. XF, LZ, YW, JC, ZS, JG participated in beneficial discussions. General guidance was done by Prof. JX. All authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Song Shi or Jie Xu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5030 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Shi, S., Feng, X. et al. Aerobic Selective Oxidation of Cyclohexylbenzene Over Organocatalysis with Pairs of Nitrogenous Hydroxyl Precursors and Anthraquinones. Catal Lett 153, 1300–1307 (2023). https://doi.org/10.1007/s10562-022-04076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04076-2

Keywords

Navigation