Skip to main content

Advertisement

Log in

Highly Selective Reduction of Carbon Dioxide to Methane on Novel Nanofibrous CoMn2O4 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mesoporous metals have excellent surface area. These metals can be used to a variety of catalytic usage, particularly to reduce carbon dioxide in to value-added products. The present paper has utilized nanoparticles of fibrous CoMn2O4 that are proposed through a naive wet chemical reduction method as catalyst to carbon dioxide methanation. It is found that methane formation has highly efficient performance as well as selectivity because of their high porosity, high surface energy and controllable crystallinity as well as high number of atomic steps divisions. The nanocatalyst structure of fibrous CoMn2O4 istotally characterized by taking advantage of different techniques including scanning electron microscopy (SEM), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and a N2 adsorption/desorption.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  2. Meng G, Ma G, Ma Q, Peng R, Liu X (2007) Solid State Ionics 178:697–703

    Article  CAS  Google Scholar 

  3. Liu ZG, Ouyang JH, Sun KN (2011) Fuel Cell 11:153–157

    Article  CAS  Google Scholar 

  4. Cao X, Vassen R, Fischer W, Tietz F, Jungen W, Stover D (2003) Adv Mater 15:1438–1442

    Article  CAS  Google Scholar 

  5. Salehi Z, Zinatloo-Ajabshir S, Salavati-Niasari M (2016) J Mol Liq 222:218–224

    Article  CAS  Google Scholar 

  6. Yang J, Zhang F, Wang X, He D, Wu G, Yang Q, Hong X, Wu Y, Li Y (2016) Angew Chem Int Ed 55:12854–12858

    Article  CAS  Google Scholar 

  7. Yao Y, He DS, Lin Y, Feng X, Wang X, Yin P, Hong X, Zhou G, Wu Y, Li Y (2016) Angew Chem Int Ed 55:5501–5505

    Article  CAS  Google Scholar 

  8. Fujiwara Y, Dixon JA, Rodriguez RA, Baxter RD, Dixon DD, Collins MR, Blackmond DG, Baran PS (2016) J Am Chem Soc 138:1494–1497

    Article  Google Scholar 

  9. Sadeghzadeh SM, Zhiani R, Khoobi M, Emrani S (2018) Microporous Mesoporous Mater 257:147–153

    Article  CAS  Google Scholar 

  10. Sadeghzadeh SM, Zhiani R, Emrani S (2018) Appl Organomet Chem 32:e3941

    Article  Google Scholar 

  11. Ling Y, Chen J, Wang Z, Xia C, Peng R, Lu Y (2013) Int J Hydrog Energy 38:7430–7437

    Article  CAS  Google Scholar 

  12. Salehi Z, Zinatloo-Ajabshir S, Salavati-Niasari M (2016) RSC Adv 6:26895–26901

    Article  CAS  Google Scholar 

  13. Zinatloo-Ajabshir S, Salehi Z, Salavati-Niasari M (2016) RSC Adv 6:107785–107792

    Article  CAS  Google Scholar 

  14. Wang C, Wang Y, Zhang A, Cheng Y, Chi F, Yu Z (2013) J Mater Sci 48:8133–8139

    Article  CAS  Google Scholar 

  15. Bezerra Lopes FW, de Souza CP (2009) Vieira de Morais AM, Dallas JP, Gavarri JR. Hydrometallurgy 97:167–172

    Article  Google Scholar 

  16. Besikiotis V, Knee CS, Ahmed I, Haugsrud R, Norby T (2012) Solid State Ionics 228:1–7

    Article  CAS  Google Scholar 

  17. Wang C, Huang W, Wang Y, Cheng Y, Zou B, Fan X, Yang J, Cao X (2012) Int J Refract Metals Hard Mater 31:242–246

    Article  Google Scholar 

  18. Sanchez-Bautista C (2010) Dos santos-García AJ, Pena-Martínez J, Canales-Vazquez. J Solid State Ionics 181:1665–1673

    Article  CAS  Google Scholar 

  19. Huang K, Sun CL, Shi ZJ (2011) Chem Soc Rev 40:2435–2452

    Article  CAS  Google Scholar 

  20. Pinaka A, Vougioukalakis GC (2015) Coord Chem Rev 288:69–97

    Article  CAS  Google Scholar 

  21. Yu D, Teong SP, Zhang Y (2015) Coord Chem Rev 293–294:279–291

    Article  Google Scholar 

  22. Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA, Surya Prakash GK, Olah GA (2014) Chem Soc Rev 43:7995–8048

    Article  CAS  Google Scholar 

  23. Wang Y, Arandiyan H, Scott J, Bagheri A, Dai H, Amal R (2017) J Mater Chem A 5:8825–8846

    Article  CAS  Google Scholar 

  24. Chen J, Arandiyan H, Gao X, Li J (2015) Catal Surv Asia 19:140–171

    Article  CAS  Google Scholar 

  25. Wang Y, Arandiyan H, Tahini HA, Scott J, Tan X, Dai H, Gale JD, Rohl AL, Smith SC, Amal R (2017) Nat Commun 8:15553

    Article  CAS  Google Scholar 

  26. Diercks CS, Liu Y, Cordova KE, Yaghi OM (2018) Nat Mater 17:301–307

    Article  CAS  Google Scholar 

  27. Karelovic A, Ruiz P (2013) ACS Catal 3:2799–2812

    Article  CAS  Google Scholar 

  28. Arandiyan H, Chang H, Liu C, Peng Y, Li J (2013) J Mol Catal A 378:299–306

    Article  CAS  Google Scholar 

  29. Arandiyan H, Kani K, Wang Y, Jiang B, Kim J, Yoshino M, Rezaei M, Rowan AE, Dai H, Yamauchi Y (2018) ACS Appl Mater Interfaces 10:24963–24968

    Article  CAS  Google Scholar 

  30. Arandiyan H, Wang Y, Sun H, Rezaei M, Dai H (2018) Chem Commun 54:6484–6502

    Article  CAS  Google Scholar 

  31. Wang Y, Arandiyan H, Liu Y, Liang Y, Peng Y, Bartlett S, Dai H, Rostamnia S, Li J (2018) CHEMCATCHEM 10:3429–3434

    Article  CAS  Google Scholar 

  32. Abdel-Mageed AM, Widmann D, Olesen SE, Chorkendorff I, Biskupek J, Behm RJ (2015) ACS Catal 5:6753–6763

    Article  CAS  Google Scholar 

  33. Kwak JH, Kovarik L, Szanyi J (2013) ACS Catal 3:2094–2100

    Article  CAS  Google Scholar 

  34. Arandiyan H, Wang Y, Scott J, Mesgari S, Dai H, Amal R (2018) ACS Appl Mater Interfaces 10:16352–16357

    Article  CAS  Google Scholar 

  35. Kai T, Yamasaki Y, Takahashi T, Masumoto T, Kimura H (1998) The. Can J Chem Eng 76:331–335

    Article  CAS  Google Scholar 

  36. Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H (2011) J Catal 278:297–309

    Article  CAS  Google Scholar 

  37. Tóth M, Kiss J, Oszkó A, Pótári G, László B, Erdőhelyi A (2012) Top Catal 55:747–756

    Article  Google Scholar 

  38. Zhu Y, Zhang S, Ye Y, Zhang X, Wang L, Zhu W, Cheng F, Tao F (2012) ACS Catal 2:2403–2408

    Article  CAS  Google Scholar 

  39. Zheng J, Wang C, Chu W, Zhou Y, Köhler K (2016) ChemistrySelect 1:3197–3203

    Article  CAS  Google Scholar 

  40. Eckle S, Augustin M, Anfang HG, Behm RJ (2012) Catal Today 181:40–51

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Natural Science Foundations of Shaanxi Province of China (Nos. 2017JQ2043, 2018JM2044) and the Natural Science Foundation of Shaanxi Provincial Department of Education (No.17JK0829) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Zhi Li or Seyed Mohsen Sadeghzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Li, G.Z. & Sadeghzadeh, S.M. Highly Selective Reduction of Carbon Dioxide to Methane on Novel Nanofibrous CoMn2O4 Catalysts. Catal Lett 151, 184–193 (2021). https://doi.org/10.1007/s10562-020-03282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03282-0

Keywords

Navigation