Skip to main content
Log in

Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We report herein the synthesis of N-substituted indoles resulting from the ring-closing metathesis of indole precursors bearing N-terminal alkenes. The aqueous metathesis of the indole precursors gave good yields of N-substituted indoles (up to 72%) with commercial metathesis catalysts and with artificial metalloenzymes based on the biotin-streptavidin technology. Strikingly, the yield of the N-acetylindole increases in presence of a second metathesis substrate.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Joule JA, Mills K (2000) Heterocyclic chemistry. Blackwell Science, Oxford

    Google Scholar 

  2. Sundberg RJ (1996) Indoles. Academic Press, San Diego

    Google Scholar 

  3. Kaushik NK, Kaushik N, Attri P, Kumarn N, Kim CH, Verma AK, Choi EH (2013) Molecules 18:6620

    Article  CAS  Google Scholar 

  4. Taber DF, Tirunahari PK (2011) Tetrahedron 67:7195

    Article  CAS  Google Scholar 

  5. Lee JH, Lee J (2010) FEMS Microbiol Rev 34:426

    Article  CAS  Google Scholar 

  6. Nelson DL, Cox MM (2005) Principles of Biochemistry, 4th edn. W. H, Freeman, New York

    Google Scholar 

  7. Crawford IP (1975) Bacteriol Rev 39:87

    Article  CAS  Google Scholar 

  8. Arisawa M, Terada Y, Takahashi K, Nakagawa M, Nishida A (2006) J Org Chem 71:4255

    Article  CAS  Google Scholar 

  9. Yoshida K, Hayashi K, Yanagisawa A (2011) Org Lett 18:4762

    Article  Google Scholar 

  10. van Otterlo WAL, de Koning CB (2009) Chem Rev 109:3743

    Article  Google Scholar 

  11. Donohoe TJ, Orr AJ, Bingham M (2006) Angew Chem Int Ed 45:2664

    Article  CAS  Google Scholar 

  12. Kajetanowicz A, Chatterjee A, Reuter R, Ward TR (2013) Catal Lett 144:373

    Article  Google Scholar 

  13. Jeschek M, Reuter R, Heinisch T, Klehr J, Panke S, Ward TR (2015) Nature 537:66

    Google Scholar 

  14. Sabatino V, Rebelein JG, Ward TR (2019) J Am Chem Soc 43:17048

    Article  Google Scholar 

  15. Zhao J, Kajetanowicz A, Ward TR (2015) Org Biomol Chem 13:5652

    Article  CAS  Google Scholar 

  16. Burtscher D, Grela K (2009) Angew Chem Int Ed 48:442

    Article  CAS  Google Scholar 

  17. Tomasek J, Schatz J (2013) Green Chem 15:2317

    Article  CAS  Google Scholar 

  18. Piola L, Nahra F, Nolan SP (2015) Beilstein J Org Chem 11:2038

    Article  CAS  Google Scholar 

  19. Skowerski K, Białecki J, Tracz A, Olszewski TK (2014) Green Chem 16:1125

    Article  CAS  Google Scholar 

  20. Novak BM, Grubbs RH (1988) J Am Chem Soc 110:7542

    Article  CAS  Google Scholar 

  21. Arisawa M, Theeraladanon C, Nishida A, Nakagawa M (2001) Tetrahedron Lett 45:8029

    Article  Google Scholar 

  22. Alcaide B, Almendros P, Luna A (2009) Chem Rev 109:3817

    Article  CAS  Google Scholar 

  23. Hansen CL, Clausen JW, Ohm RG, Ascic E, Le Quement ST, Tanner D, Nielsen TE (2013) J Org Chem 78:12545

    Article  CAS  Google Scholar 

  24. Clark JR, Griffiths JR, Diver ST (2013) J Am Chem Soc 135:3327

    Article  CAS  Google Scholar 

  25. Guidone S, Songis O, Nahra F, Cazin CSJ (2015) ACS Catal 5:2697

    Article  CAS  Google Scholar 

  26. Dolman SJ, Schrock RR, Hoveyda AH (2003) Org Lett 5:4899

    Article  CAS  Google Scholar 

  27. Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR (2018) Chem Rev 118:142

    Article  CAS  Google Scholar 

  28. Davis HJ, Ward TR (2019) ACS Central Science 5:1120

    Article  CAS  Google Scholar 

  29. Liang, AD, Serrano-Plana J, Peterson RL, Ward TR Acc Chem Res 52:585.

  30. Sabatino V, Ward TR (2019) Beilstein J Org Chem 15:445

    Article  CAS  Google Scholar 

  31. Adjiman CS, Clarke AJ, Cooper G, Taylor PC (2008) Chem Comm 24:280

    Google Scholar 

  32. Schwab P, Grubbs RH, Ziller JW (1996) J Am Chem Soc 118:100

    Article  CAS  Google Scholar 

  33. Adlhart C, Chen P (2004) J Am Chem Soc 126:3496

    Article  CAS  Google Scholar 

  34. Hong SH, Day MW, Grubbs RH (2004) J Am Chem Soc 126:7414

    Article  CAS  Google Scholar 

  35. Elaridi J, Jackson WR, Robinson AJ (2005) Tetrahedron: Asymmetry 16:2025.

Download references

Acknowledgement

T.R.W. thanks the University of Basel, the NCCR Molecular Systems engineering, the SNF (G rant 200020_182046) and the ERC (the DrEAM, advanced grant 694424) for generous funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Ward.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabatino, V., Staub, D. & Ward, T.R. Synthesis of N-Substituted Indoles via Aqueous Ring-Closing Metathesis. Catal Lett 151, 1–7 (2021). https://doi.org/10.1007/s10562-020-03271-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03271-3

Keywords

Navigation