Skip to main content
Log in

WO3–ZrO2–TiO2 Composite Oxide Supported Pt as an Efficient Catalyst for Continuous Hydrogenolysis of Glycerol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Two series of WO3–ZrO2 and WO3–ZrO2–TiO2 composite oxides were prepared via an Evaporation Induced Self Assembly (EISA) method and applied for the hydrogenolysis of glycerol after loading with Pt. Several techniques like XRD, BET, Raman spectroscopy, NH3-TPD, Py-IR, TEM and XPS were adopted to characterize the physicochemical properties of the as-synthesized catalysts. The structure and catalytic activities of these catalysts were significantly affected by the calcination temperature of the composite oxides. The introduction of TiO2 into Pt/WO3–ZrO2 could inhibit the drastic decrease in catalytic performance due to the formation of inactive crystalline WO3 under high calcination temperature of 800 ℃. A maximum activity was obtained on the Pt/WO3–ZrO2–TiO2 catalyst when the calcination temperature was 600 ℃, which gave 73.8% glycerol conversion and 25.4% 1,3-propanediol yield. While the Pt/WO3–ZrO2 catalyst only exhibited 53.4% glycerol conversion and 20.2% 1,3-propanediol yield. The enhanced activity of Pt/WO3–ZrO2–TiO2 was ascribed to the improved acidity originating from (i) higher acidic properties of WOx species when linked to Ti with larger electronegativity other than Zr and (ii) new acid centers caused by heteroatoms linkage as the combination of ZrO2 and TiO2. The effects of Pt loading amount and reaction temperatures were also investigated.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang LH, Li XW, Chen P, Hou ZY (2019) Chin J Catal 40:1020–1034

    CAS  Google Scholar 

  2. Li XW, Jiang YY, Zhou RR, Hou ZY (2019) Appl Clay Sci 174:120–126

    CAS  Google Scholar 

  3. Sun DY, Yamada Y, Sato S, Weda W (2016) Appl Catal B 193:75–92

    CAS  Google Scholar 

  4. Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2010) Appl Catal B 94:318–326

    CAS  Google Scholar 

  5. Amanda Y, Shinmi Y, Koso S, Kubota T, Nakagawa Y, Tomishige K (2011) Appl Catal B 105:117–127

    Google Scholar 

  6. Deng CH, Leng L, Zhou JH, Zhou XG, Yuan WK (2015) Chin J Catal 36:1750–1758

    CAS  Google Scholar 

  7. Huang L, Zhu YL, Zheng HY, Ding GQ, Li YW (2009) Catal Lett 131:312–320

    CAS  Google Scholar 

  8. Zhu SH, Qiu YN, Zhu YL, Hao SL, Zheng HY, Li YW (2013) Catal Today 212:120–126

    CAS  Google Scholar 

  9. Zhu SH, Gao XQ, Zhu YL, Zhu YF, Xiang XM, Hu CX, Li YW (2013) Appl Catal B 140–141:60–67

    Google Scholar 

  10. Qin LZ, Song MJ, Chen CL (2010) Green Chem 12:1466–1472

    CAS  Google Scholar 

  11. García-Fernández S, Gandarias I, Requies J, Güemez MB, Bennici S, Auroux A, Arias PL (2015) J Catal 323:65–75

    Google Scholar 

  12. García-Fernández S, Gandarias I, Requies J, Soulimani F, Arias PL, Weckhuysen BM (2017) Appl Catal B 204:260–272

    Google Scholar 

  13. Zhu SH, Gao XQ, Zhu YL, Cui JL, Zheng HY, Li YW (2014) Appl Catal B 158–159:391–399

    Google Scholar 

  14. Zhou W, Zhao YJ, Wang Y, Wang SP, Ma XB (2016) ChemCatChem 8:3663–3671

    CAS  Google Scholar 

  15. Hino M, Arata K (1988) J Chem Soc Chem Commun 18:1259–1260

    Google Scholar 

  16. Song KS, Zhang HB, Zhang YH, Tang Y, Tang KJ (2013) J Catal 299:119–128

    CAS  Google Scholar 

  17. Santiesteban JG, Vartuli JC, Han S, Bastian RD, Chang CD (1997) J Catal 168:431–441

    CAS  Google Scholar 

  18. Martinez A, Prieto G, Arribas M (2007) J Catal 248:288–302

    CAS  Google Scholar 

  19. Sun WD, Zhao Z, Guo C (2000) Ind Eng Chem Res 39:3717–3725

    CAS  Google Scholar 

  20. Fan YQ, Cheng SJ, Wang H, Tian J, Xie SH, Pei Y, Qiao MH, Zong BN (2017) Appl Catal B 217:331–341

    CAS  Google Scholar 

  21. Kim T, Burrows A, Kiely CJ, Wachs IE (2007) J Catal 246:370–381

    CAS  Google Scholar 

  22. Wang H, Yao ZY, Zhan XC, Wu Y, Li M (2015) Fuel 158:918–926

    CAS  Google Scholar 

  23. Liu EM, Locke AJ, Frost RL, Martens WN (2012) J Mol Catal A 353–354:95–105

    Google Scholar 

  24. Duan AJ, Li RL, Jiang GY, Gao JS, Zhao Z, Wan GF, Zhang DQ, Huang WQ, Chung KH (2009) Catal Today 140:187–191

    CAS  Google Scholar 

  25. Escobar J, Antonio J, De Los R, Viveros T (2003) Appl Catal A 253:151–163

    CAS  Google Scholar 

  26. Gong Y, Chen HY, Chen Y, Cui XZ, Zhu Y, Zhou XX, Shi JL (2013) Micro Meso Mater 173:112–120

    CAS  Google Scholar 

  27. Boffito DC, Crocellà V, Pirola C, Neppolian B, Cerrato G, Ashokkumar M, Bianchi CL (2013) J Catal 297:17–26

    CAS  Google Scholar 

  28. Peng LC, Zhuang JP, Lin L (2012) J Nat Gas Chem 21:138–147

    CAS  Google Scholar 

  29. Ross-Medgaarden EI, Knowles WV, Kim T, Wong MS, Zhou W, Kiely CJ, Wachs IE (2008) J Catal 256:108–125

    CAS  Google Scholar 

  30. Hernández ML, Montoya JA, Hernández I, Viniegra M, Llanos ME, Garibay V, Angel PD (2006) Micro Meso Mater 89:186–195

    Google Scholar 

  31. Scheithauer M, Grasselli RK, Knözinger H (1998) Langmuir 14:3019–3029

    CAS  Google Scholar 

  32. Triwahyono S, Yamada T, Hattori H (2003) Appl Catal A 250:75–81

    CAS  Google Scholar 

  33. Zhu QJ, Chu XF, Zhang ZY, Dai WL, Fan KN (2012) Appl Catal A 435–436:141–147

    Google Scholar 

  34. Oanh LM, Do DB, Hung NM, Thang DV, Phuong DT, Ha DT, Van MN (2016) J Elect Mater 45:2553–2558

    CAS  Google Scholar 

  35. Zhou W, Luo J, Wang Y, Liu JF, Zhao YJ, Wang SP, Ma XB (2019) Appl Catal B 242:410–421

    CAS  Google Scholar 

  36. Yue CC, Zhu XC, Rigutto M, Hensen E (2015) Appl Catal B 163:370–381

    CAS  Google Scholar 

  37. Dozzi MV, Marzorati S, Longhi M, Coduri M, Artiglia L, Selli E (2016) Appl Catal B 186:157–165

    CAS  Google Scholar 

  38. Cortés-Jácome MA, Angeles-Chavez C, López-Salinas E, Navarrete J, Toribio P, Toledo JA (2007) Appl Catal A 318:178–189

    Google Scholar 

  39. Wang J, Zhao XC, Lei N, Li L, Zhang LL, Xu ST, Miao S, Pan XL, Wang AQ, Zhang T (2016) Chemsuschem 9:784–790

    CAS  PubMed  Google Scholar 

  40. Chaudhary M, Shen PF, Chang SM (2018) Appl Surf Sci 440:369–377

    CAS  Google Scholar 

  41. Ma TL, Yun Z, Xu W, Chen LG, Li L, Ding JF, Shao R (2016) Chem Eng J 294:343–352

    CAS  Google Scholar 

  42. Li S, Zhou H, Jin CH, Feng ND, Liu F, Deng F, Wang JQ, Huang W, Xiao LP, Fan J (2014) J Phys Chem C 118:6283–6290

    CAS  Google Scholar 

  43. Zhu SH, Gao XQ, Zhu YL, Li YW (2015) J Mol Catal A 398:391–398

    CAS  Google Scholar 

  44. Takasu Y, Teramoto M, Matsuda Y (1983) J Chem Soc Chem Commun 1329–1330

  45. Kataoka T, Dumesic JA (1988) J Catal 112:66–79

    CAS  Google Scholar 

  46. Shintaku H, Nakajima K, Kitano M, Ichikuni N, Hara M (2014) ACS Catal 4:1198–1204

    CAS  Google Scholar 

  47. Onfroy T, Lebarbier V, Clet G, Houalla M (2010) J Mol Catal A 318:1–7

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Science and Technology commission of Shanghai Municipality (14DZ2261100) and National Natural Science Foundation of China (No. 21603069).

Funding

This work was financially supported by Science and Technology commission of Shanghai Municipality (14DZ2261100) and National Natural Science Foundation of China (No. 21603069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, Z., Jia, W. & Zhu, Z. WO3–ZrO2–TiO2 Composite Oxide Supported Pt as an Efficient Catalyst for Continuous Hydrogenolysis of Glycerol. Catal Lett 151, 124–137 (2021). https://doi.org/10.1007/s10562-020-03270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03270-4

Keywords

Navigation