Skip to main content
Log in

Stabilized hydrogenolysis of glycerol to 1,3-propanediol over Mg modified Pt/WOx–ZrO2 catalysts

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Stable hydrogenolysis of glycerol to value-added 1,3-propanediol (1,3-PDO) over WOx-containing catalyst is a serious challenge in aqueous solution. Because the tungsten oxide can interact with the H+ to form H2WO4 and dissolve to deactivate for catalyst under hydrothermal condition. Therefore, we prepared stable Pt/WOx–ZrO2 catalysts modified with Mg by the method of impregnation–calcination. The Raman and H2-TPR spectra demonstrate that the polymerization degree of WOx on the catalyst surface could be effectively reduced by introducing Mg. The formation of smaller WOx species are conducive to the formation of 1,3-PDO. Among them, the Pt/0.66Mg/WOx–ZrO2 achieved the maximum 62.4% selectivity of 1,3-PDO. In addition, the Pt/WOx–ZrO2 catalyst was deactivated due to leaching of tungsten from ZrO2 surface into the aqueous solution. Introduction of Mg can inhibit the leaching of tungsten and greatly improve the stability in hydrogenolysis of glycerol. So the Pt/0.50Mg/WOx–ZrO2 catalyst showed excellent stability with 56% conversion and 33% yield of 1,3-PDO under an extremely long 400 h time-on-stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhou CC, Beltramini JN, Fan YX, Lu GQ (2008) Chem Soc Rev 37:527–549

    Article  PubMed  Google Scholar 

  2. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13–30

    Article  CAS  Google Scholar 

  3. Xie QL, Li SS, Gong RC, Zheng GJ, Wang YL, Xu P, Duan Y, Yu SZ, Lu MZ, Ji WR, Nie Y, Ji JB (2019) Appl Catal B: Environ 243:455–462

    Article  CAS  Google Scholar 

  4. Sullivan JA, Burnham S (2014) Catal Commun 56:72–75

    Article  CAS  Google Scholar 

  5. Kong PS, Aroua MK, Daud WMAW (2015) Rev Chem Eng 31:437–451

    Article  CAS  Google Scholar 

  6. Nimlos MR, Blanksby SJ, Qian X, Himmel ME, Johnson DK (2006) J Phys Chem A 110:6145–6156

    Article  CAS  PubMed  Google Scholar 

  7. Yue HR, Zhao YJ, Ma XB, Gong JL (2012) Chem Soc Rev 41:4218–4244

    Article  CAS  PubMed  Google Scholar 

  8. Shi GJ, Cao Z, Xu JY, Jin K, Bao Y, Xu SH (2018) Catal Lett 148:2304–2314

    Article  CAS  Google Scholar 

  9. Li C, He B, Ling Y, Tsang CW, Liang CH (2018) Chin J Catal 39:1121–1128

    Article  CAS  Google Scholar 

  10. Priya SS, Kumar VP, Kantam ML, Bhargava SK, Srikanth A, Chary KVR (2015) Ind Eng Chem Res 54:9104–9115

    Article  CAS  Google Scholar 

  11. Pamphile-Adrián AJ, Florez-Rodriguez PP, Pires MHM, Perez G, Passos FB (2017) Catal Today 289:302–308

    Article  CAS  Google Scholar 

  12. Deng CH, Leng LL, Duan XZ, Zhou JG, Zhou XG, Yuan WK (2015) J Mol Catal A-Chem 410:81–88

    Article  CAS  Google Scholar 

  13. Shi GJ, Xu JY, Song ZG, Cao Z, Jin K, Xu SH, Yan XT (2018) Mol Catal 456:22–30

    Article  CAS  Google Scholar 

  14. García-Fernández S, Gandarias I, Requies J, Soulimani F, Arias PL, Weckhuysen BM (2017) Appl Catal B 204:260–272

    Article  CAS  Google Scholar 

  15. Feng SH, Zhao BB, Liu L, Dong JX (2017) Ind Eng Chem Res 56:11065–11074

    Article  CAS  Google Scholar 

  16. Zhang YH, Zhao XC, Wang Y, Zhou LK, Zhang JY, Wang J, Wang AQ, Zhang T (2013) J Mater Chem A 1:3724–3732

    Article  CAS  Google Scholar 

  17. Kurosaka T, Maruyama H, Naribayashi I, Sasaki Y (2008) Catal Commun 9:1360–1363

    Article  CAS  Google Scholar 

  18. Qin LZ, Song MJ, Chen CL (2010) Green Chem 12:1466–1472

    Article  CAS  Google Scholar 

  19. Garcia-Fernandez S, Gandarias I, Tejido-Nunez Y, Requies J, Arias PL (2017) ChemCatChem 24:4508–4519

    Article  CAS  Google Scholar 

  20. Zhou W, Luo J, Wang Y, Liu JF, Zhao YJ, Wang SP, Ma XB (2019) Appl Catal B 242:410–421

    Article  CAS  Google Scholar 

  21. Cortés-Jácome MA, Angeles-Chavez C, López-Salinas E, Navarrete J, Toribio P, Toledo JA (2007) Appl Catal A 318:178–189

    Article  CAS  Google Scholar 

  22. Zhu SH, Gao XQ, Zhu YL, Cui JL, Zheng HY, Li YW (2014) Appl Catal B 158–159:391–399

    Article  CAS  Google Scholar 

  23. Fabičovicová K, Lucas M, Claus P (2015) Green Chem 17:3075–3083

    Article  CAS  Google Scholar 

  24. Lucas M, Fabicovicova K, Claus P (2018) ChemCatChem 10:612–618

    Article  CAS  Google Scholar 

  25. Zhu SH, Gao XQ, Zhu YL, Zhu YF, Xiang XM, Hu CX, Li YW (2013) Appl Catal B 140:60–67

    Article  CAS  Google Scholar 

  26. Zhu M, Chen CL (2018) Reac Kinet Mech Cat 124:683–699

    Article  CAS  Google Scholar 

  27. Gu MY, Shen Z, Yang L, Peng BY, Dong WJ, Zhang W, Zhang YL (2017) Ind Eng Chem Res 56:13572–13581

    Article  CAS  Google Scholar 

  28. Mohandes F, Davar F, Salavati-Niasari M (2010) J Phys Chem Solids 71:1623–1628

    Article  CAS  Google Scholar 

  29. Selvam NCS, Kumar RT, Kennedy LJ, Vijaya JJ (2011) J Alloy Compd 509:9809–9815

    Article  CAS  Google Scholar 

  30. López DE, Suwannakarn K, Bruce DA Jr, Goodwin JG Jr (2007) J Catal 247:43–50

    Article  CAS  Google Scholar 

  31. Kourieh R, Bennici S, Marzo M, Gervasini A, Auroux A (2012) Catal Commun 19:119–126

    Article  CAS  Google Scholar 

  32. Scheithauer M, Grasselli RK, Knozinger H (1998) Langmuir 14:3019–3029

    Article  CAS  Google Scholar 

  33. Song KS, Zhang HB, Zhang YH, Tang Y, Tang KJ (2013) J Catal 299:119–128

    Article  CAS  Google Scholar 

  34. Zhu SH, Gao XQ, Zhu YL, Li YW (2015) J Mol Catal A 398:391–398

    Article  CAS  Google Scholar 

  35. Niu L, Wei RP, Li C, Gao LJ, Zhou MH, Jiang F, Xiao GM (2015) Reac Kinet Mech Cat 115:377–388

    Article  CAS  Google Scholar 

  36. Geng GL, Wei RP, Liang T, Zhou MH, Xiao GM (2016) Reac Kinet Mech Cat 117:239–251

    Article  CAS  Google Scholar 

  37. Wang AQ, Zhang T (2013) Accounts Chem Res 46:1377–1386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Research and Development of Prospective Research Project of Jiangsu Province, China (BY2015005-08) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Chen, C. Stabilized hydrogenolysis of glycerol to 1,3-propanediol over Mg modified Pt/WOx–ZrO2 catalysts. Reac Kinet Mech Cat 128, 461–477 (2019). https://doi.org/10.1007/s11144-019-01650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-019-01650-5

Keywords

Navigation