Skip to main content

Advertisement

Log in

NiMo Catalysts Supported on Al-Based Mixed Oxide Prepared By Hydrothermal Method: Effect of Zn/Al Ratio and Addition of Silica on HDS Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effect of Zn/Al ratio and addition of silica to Al–Znx oxides on the structure and catalytic properties of supported NiMo catalysts in hydrodesulfurization reaction of thiophene was studied. NiMo catalysts were synthesized by simultaneous impregnation of Ni acetate and 12-molybdophosphoric acid on Al–Znx and Al–Zn0.16–Si mixed oxide (with x = Zn/Al ratio of 0.05–0.57) prepared by hydrothermal synthesis at 180 °C. Colloidal SiO2 was added to the Al–Znx oxides (Si/Al = 0.3 ratio) to modify textural and structural properties of NiMo catalysts. These materials were characterized by N2 physisorption, SEM, XRD, FTIR, UV–Vis DRS, TPR–H2, TPD–NH3, XPS, HRTEM and tested in thiophene conversion at 280–400 °C and 1.0 MPa. It was found out that the surface area of the supports calcined at 500 °C, decreases with the increasing Zn/Al ratio, which could be due to the interaction of the Zn with the alumina, leading to formation of Zn-spinel. After impregnation of the supports with NiMo active components, the presence of Zn increases the amount of surface Mo in octahedral sites at Zn/Al = 0.21 ratio. At this ratio maximum in HDS activity of NiMo/Al–Znx samples was observed. Addition of silica to Al-Zn mixed oxide (Zn/Al = 0.16) leads to more active NiMo catalyst due to formation of more Ni(Zn)–Mo–S active species as revealed by XRD and HRTEM.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berhault G (2016) in: Metal sulfides: novel synthesis methods and recent developments, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  2. Breysse M, Geantet C, Afanasiev P, Blanchard J, Vrinat M (2008) Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts Catal. Today 130:3–13

    CAS  Google Scholar 

  3. Kaluza L, Jiratova K, Tyuliev G, Gulkova D, Balabanova J, Palcheva R, Kostejn M, Spojakina A (2018) Hydrodesulfuriazation of NiMo catalysts over gamma-alumina prepared mechanochemically. React Kinet Mech Catal 125:319–337

    CAS  Google Scholar 

  4. Nikulshin PA, Tomina NN, Pimerzin AA, Kucherov AV, Kogan VM (2010) Investigation into the effect of the intermediate carbon carrier on the catalytic activity of the HDS catalysts prepared using heteropolycompounds. Catal Today 149:82–90

    CAS  Google Scholar 

  5. Blanchard P, Lamonier C, Griboval A, Payen E (2007) New insight in the preparation of alumina supported hydrotreatment oxide precursors: a molecular approach. Appl Catal A 322:33–45

    CAS  Google Scholar 

  6. Zhang C, Brorson M, Li P, Liu X, Liu T, Jiang Z, Li C (2019) CoMo/Al2O3 catalysts prepared by tailoring the surface properties of alumina for highly selective hydrodesulfurization of FCC gasoline. Appl Catal A 570:84–95

    CAS  Google Scholar 

  7. Thomas R, van Oers EM, de Beer VHJ, Madema J, Moilijn JA (1982) Characterization of γ-alumina – supported molybdenum oxide and tungsten oxide; reducibility of the oxidic state versus hydrodesulfurization activity of the sulfide state. J Catal 76:241–253

    CAS  Google Scholar 

  8. Vazquez-Garrido I, Lopez-Benitez A, Berhault G, Guevara-Lara A (2019) Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions. Fuel 236:55–64

    CAS  Google Scholar 

  9. Mogica-Betancourt JC, Lopez-Benitez A, Montiel-Lopez JR, Massin L, Aouine M, Vrinat M, Berhault G, Guevara-Lara A (2014) Interaction effects of nickel polyoxotungstate with the Al2O3-MgO support for application in dibenzothiophene hydrodesulfurization. J Catal 313:9–23

    CAS  Google Scholar 

  10. Klicpera T, Zdrazil M (2001) High surface area MoO3/MgO: preparation by reaction of MoO3 and MgO in methanol or ethanol slurry and activity inhydrodesulfurization of benzothiophene. Appl Catal A: Gen 216:41–50

    CAS  Google Scholar 

  11. Linares CF, Lopez J, Scaffidi A, Scott CE (2005) Preparation of ZnNiMo/γ-alumina catalysts from recycled Ni for hydrotreating reactions. Appl Catal A 292:113–117

    CAS  Google Scholar 

  12. Linares CF, Fernandez M (2008) Study of the individual reaction of hydrodesulfurization of dibenzothiophene and hydrogenation of 2-methylnaphthalene on ZnNiMo/γ-alumina catalysts. Catal Letters 126:341–345

    CAS  Google Scholar 

  13. Chen Y, Wang L, Zhang Y, Liu T, Liu X, Jiang Z, Li C (2014) A new multi–metallic bulk catalyst with high hydrodesulfurization activity of 4,6–DMDBT prepared using layered hydroxide salts as structural templates. Appl Catal A: Gen 474:69–77

    CAS  Google Scholar 

  14. Liu H, Liu C, Yin C, Chai Y, Li Y, Liu D, Liu B, Li X, Wang Y, Li X (2015) Preparation of highly active unsupported nickel-zinc-molybdenum catalysts for the hydrodesulfurization of dibenzothiophene. Appl Catal B 174–175:264–276

    Google Scholar 

  15. Chen Y, Wang L, Zhang Y, Liu T, Liu X, Jiang Z, Li C (2015) Hydrodesulfurization of 4,6-DMDBT on multi-metallic bulk catalyst NiAlZnMoW: effect of Zn. Appl Catal A 504:319–327

    CAS  Google Scholar 

  16. Li H, Li M, Nie H (2014) Tailoring the surface characteristic of alumina for preparation of highly active NiMo/Al2O3 hydrodesulfurization catalyst. Microporous Mesoporous Mater 188:30–36

    CAS  Google Scholar 

  17. Hu J, Guo Y, Huang T, Fan Yu (2019) Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization. Appl Catal B 244:385–395

    Google Scholar 

  18. Dong Y, Hu Y, Zhang Y, Yi X, Zhou Y (2018) Synthesis of hierarchically structured alumina support with adjustablenanocrystalline aggregation towards efficient hydrodesulfurization. Appl Catal A 559:30–39

    CAS  Google Scholar 

  19. Zhang H, Lin H, Zheng Y, Hu Y, MacLennan A (2015) Understanding of the effect of synthesis temperature on the crystallization and activity of nano-MoS2 catalyst. Appl Catal B 165:537–546

    CAS  Google Scholar 

  20. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure App Chem 57:603–619

    CAS  Google Scholar 

  21. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207–219

    CAS  Google Scholar 

  22. Guevara-Lara A, Cruz-Perez AE, Contreras-Valdez Z, Mogica-Betancourt J, Alvarez-Hernandez A, Vrinat M (2010) Effect of Ni promoter in the oxide precursors of MoS2/MgO–Al2O3 catalysts tested in dibenzothiophene hydrodesulphurization. Catal Today 149:288–294

    CAS  Google Scholar 

  23. Xu C, Si-Fu Tang X, Sun Y, Sun G, Li J, Qi X, Li XL (2017) Investigation on the cleavage of β-O-4 linkage in dimeric lignin model compound over nickel catalysts supported on ZnO-Al2O3 composite oxides with varying Zn/Al ratios. Catal Today 298:89–98

    CAS  Google Scholar 

  24. Strohmeier BR, Hercules DM (1984) Surface Spectroscopic Characterization of the interaction between zinc ions and γ-alumina. J Catal 86:266–279

    CAS  Google Scholar 

  25. Zhai B-G, Ma Q-L, Yang L, Huang YM (2017) Growth of ZnMoO4 nanowires via vapor deposition in air. Mater. Lett. 188:119–122

    CAS  Google Scholar 

  26. Nguyen-Phu H, Shin EW (2019) Disordered structure of ZnAl2O4 phase and the formation of a Zn NCO complex in ZnAl mixed oxide catalysts for glycerol carbonylation with urea. J Catal 373:147–160

    CAS  Google Scholar 

  27. Ahsaine HA, Zbair M, Ezahri M, Abdeljalil B, Bakiz B, Guinneton F, Gavarri J-R (2016) Structural and temperature-dependent vibrational analyses of the non-centrosymmetric ZnMoO4 molybdate. J Mater Environ Sci 7(9):3076–3083

    Google Scholar 

  28. Lizama L, Klimova T (2008) Highly active deep HDS catalysts prepared using Mo and W heteropolyacids supported on SBA-15. Appl Catal B 82:139–150

    CAS  Google Scholar 

  29. Gao D, Duan A, Zhang X, Zhao Z, Li HEJ, Wang H (2015) Synthesis of NiMo catalysts supported on mesoporous Al-SBA-15 with different morphologies and their catalytic performance of DBT HDS. Appl Catal B 165:269–284

    CAS  Google Scholar 

  30. Mogica-Betancourt JC, Lopez-Benitez A, Montiel-Lopez JR, Massin L, Aouine M, Vrinat M, Berhault G, Guevara-Lara A (2014) Interaction effects of nickel polyoxotungstate with the Al2O3–MgO support for application in dibenzothiophene hydrodesulfurization. J Calal 313:9–23

    CAS  Google Scholar 

  31. Weber T, Muijers JC, van Wolput JHMC, Verhagen CPJ, Niemantsverdriet JW (1996) Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy. J Phys Chem 100:14144–14150

    CAS  Google Scholar 

  32. López-Benitez A, Berhault G, Silva-Rodrigo R, Rodríguez-Avila JA, Vrinat M, Guevara-Lara A (2019) Evaluation of the interest of NiMo catalysts supported on Mg-TiO2 for hydrodesulfurization applications. Catal. Lett. 149:2656–2670

    Google Scholar 

  33. Yang L, Wang X-Z, Liu Y, Yu Z-F, Liang J-J, Chen B-B, Shi C, Tian S, Li X, Qiu J-S (2017) Monolayer MoS2 anchored on reduced graphene oxide nanosheets for efficient hydrodesulfurization. Appl Catal B 200:211–221

    CAS  Google Scholar 

  34. Blanco E, Uzio D, Berhault G, Afanasiev P (2014) From core–shell MoSx/ZnS to open fullerene-like MoS2 nanoparticles. J Mater Chem A 2:3325–3331

    CAS  Google Scholar 

  35. Eijsbouts S, van den Oetelaar LCA, van Puijenbroek RR (2005) MoS2 morphology and promoter segregation in commercial Type 2 Ni–Mo/Al2O3 and Co–Mo/Al2O3 hydroprocessing catalysts. J Catal 229:352–364

    CAS  Google Scholar 

  36. Lauritsen JV, Helveg S, Lægsgaard E, Stensgaard I, Clausen BS, Topsøe H, Besenbacher F (2001) Atomic-scale structure of Co–Mo–S nanoclusters in hydrotreating catalysts. J Catal 197:1–5

    CAS  Google Scholar 

  37. Afanasiev P (2017) Calculation of MoS2 slabs morphology descriptors from transmission electron microscopy data revisited. Case study of the influence of citric acid and treatment conditions on the properties of MoS2/Al2O3. Appl Catal A 529:10–19

    CAS  Google Scholar 

  38. Cinibulk J, Kooyman PJ, Vít Z, Zdražil M (2003) Magnesia-supported Mo, CoMo and NiMo sulfide Catalysts prepared by nonaqueous impregnation: parallel HDS/HDN of thiophene and pyridine and TEM microstructure. Catal Lett 89:147–152

    CAS  Google Scholar 

  39. Klimova T, Reyes J, Gutierrez O, Lizama L (2008) Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization: effect of support Si/Al ratio. Appl Catal A 335:159–171

    CAS  Google Scholar 

  40. Bremmera GM, van Haandelb L, Hensen EJM, Frenken JWM, Kooyman PJ (2019) The effect of oxidation and resulfidation on (Ni/Co)MoS2 hydrodesulfurisation catalysts. Applied Catalysis B 243:145–150

    Google Scholar 

  41. Santolalla-Vargas CE, Suarez Toriello VA, de los Reyes JA, Cromwell DK, Pawelec B, Fierro JLC (2005) Effects of pH and chelating agent on the NiWS phase formation in NiW/γ-Al2O3 catalysts. Mater. Chem. Physics 166:105–115

    Google Scholar 

Download references

Acknowledgements

Scientific Cooperation Funds of Bulgarian and Czech Academies of Sciences are gratefully acknowledged. L.K. and J.M. appreciate and acknowledge the Czech Science Foundation (project no. 17-22490S) for financial support.

Funding

Design of catalysts for environmental applications featuring heteropolyacids and chelating agents was supported by Grant Number MP BAS-17-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Palcheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palcheva, R., Kaluža, L., Moravčík, J. et al. NiMo Catalysts Supported on Al-Based Mixed Oxide Prepared By Hydrothermal Method: Effect of Zn/Al Ratio and Addition of Silica on HDS Activity. Catal Lett 150, 3276–3286 (2020). https://doi.org/10.1007/s10562-020-03232-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03232-w

Keywords

Navigation