Skip to main content
Log in

Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural and Furfural by a Phosphate-Doped SnO2 Catalyst in γ-Valerolactone-Water System

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

5-Hydroxymethylfurfural (5-HMF) and furfural are produced from glucose by using a novel phosphate-doped SnO2 catalyst in GVL/water system. Comparing with the low yield (19.3% 5-HMF, 7.2% furfural) of SnO2 as catalyst, the loading of 15 wt% phosphate on the SnO2 can enhance the yield of 5-HMF (39.2%) and furfural (12.5%) from glucose under same reaction conditions. Furthermore, under the optimal conditions, the results indicate that the phosphated SnO2 catalyst, which contains 5 wt% phosphate, can result in 46.4% yield of 5-HMF and 18.9% yield of furfural at 180 °C for 90 min. The phosphated SnO2 catalysts are characterized by using XRD, TEM, Py-IR, XPS and TPD to reveal their structural, surface, and acid properties. And the enhanced 5-HMF and furfural yield could be attributed to the higher acidity, and the incorporation of phosphate into the framework of SnO2.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2.
Fig. 7

Similar content being viewed by others

References

  1. Rout PK, Nannaware AD, Prakash O, Kalra A, Rajasekharan R (2016) Chem Eng Sci 142:318–346

    CAS  Google Scholar 

  2. Yang Y, Liu Q, Li D, Tan J, Zhang Q, Wang C, Ma L (2017) RSC Adv 27:16311–16318

    Google Scholar 

  3. Cai Q, Liu R, He Y, Chai M, Cai J (2018) Fuel Process Technol 171:308–317

    CAS  Google Scholar 

  4. Shi N, Liu Q, Zhang Q, Wang T, Ma L (2013) Green Chem 15:1967–1974

    CAS  Google Scholar 

  5. Chen D, Zheng Z, Fu K, Zeng Z, Wang J, Lu M (2015) Fuel 159:27–32

    CAS  Google Scholar 

  6. Werpy T, Petersen G (2004) Top value added chemicals from biomass, vol 1, Results of screening for potential candidates from sugars and synthesis gas, US DOE Report

  7. Iris KMY, Daniel CWT (2017) Bioresour Technol 238:716–732

    Google Scholar 

  8. Kang S, Zhang G, Yang X, Yin H, Fu X, Liao J, Tu J, Huang X, Qin F, Xu Y (2017) Energy Fuels 31:2847–2854

    CAS  Google Scholar 

  9. Yang Y, Ma J, Jia X, Du Z, Duan Y, Xu J (2016) RSC Adv 6:51221–51228

    CAS  Google Scholar 

  10. Torres AI, Daoutidis P, Tsapatsis M (2010) Energy Environ Sci 3:1560

    CAS  Google Scholar 

  11. Zhang X, Murria P, Jiang Y, Xiao W, Kenttämaa HI, Abu-Omar MM, Mosier NS (2016) Green Chem 18:5219–5229

    CAS  Google Scholar 

  12. Liu F, Audemar M, De Oliveira VK, Cartigny D, Clacens JM, Costa Gomes MF, Pádua AAH, De Campo F, Jérôme F (2013) Green Chem 15:3205

    CAS  Google Scholar 

  13. Pagán-Torres YJ, Wang T, Gallo JMR, Shanks BH, Dumesic JA (2012) ACS Catal 2:930–934

    Google Scholar 

  14. Teong SP, Yi G, Zeng H, Zhang Y (2015) Green Chem 17:3751–3755

    CAS  Google Scholar 

  15. Tian G, Tong X, Cheng Y, Xue S (2013) Carbohydr Res 370:33–37

    CAS  PubMed  Google Scholar 

  16. Wrigstedt P, Keskiväli J, Leskelä M, Repo T (2015) ChemCatChem 7:501–507

    CAS  Google Scholar 

  17. Zhang X, Hewetson BB, Mosier NS (2015) Energy Fuels 29:2387–2393

    CAS  Google Scholar 

  18. Atanda L, Silahua A, Mukundan S, Shrotri A, Torres-Torres G, Beltramini J (2015) RSC Adv 5:80346–80352

    CAS  Google Scholar 

  19. Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) Chem Commun 41:6276–6278

    Google Scholar 

  20. Hu L, Wu Z, Xu J, Sun Y, Lin L, Liu S (2014) Chem Eng J 244:137–144

    CAS  Google Scholar 

  21. Van de Vyver S, Roman-Leshkov Y (2015) Angew Chem Int 54:12554–12561

    Google Scholar 

  22. Osatiashtiani A, Lee AF, Granollers M, Brown DR, Olivi L, Morales G, Melero JA, Wilson K (2015) ACS Catal 5:4345–4352

    CAS  Google Scholar 

  23. Ordomsky VV, Sushkevich VL, Schouten JC, van der Schaaf J, Nijhuis TA (2013) J Catal 300:37–46

    CAS  Google Scholar 

  24. Yan H, Yang Y, Tong D, Xiang X, Hu C (2009) Catal Commun 10:1558–1563

    CAS  Google Scholar 

  25. Nakajima K, Baba Y, Noma R, Kitano M, Kondo JN, Hayashi S, Hara M (2011) J Am Chem Soc 133:4224–4227

    CAS  PubMed  Google Scholar 

  26. Hou Q, Zhen M, Liu L, Chen Y, Huang F, Zhang S, Li W, Ju M (2018) Appl Catal B 224:183–193

    CAS  Google Scholar 

  27. Li K, Du M, Ji P (2018) ACS Sustain Chem Eng 6:5636–5644

    CAS  Google Scholar 

  28. Marianou AA, Michailof CM, Pineda A, Iliopoulou EF, Triantafyllidis KS, Lappas AA (2018) Appl Catal A 555:75–87

    CAS  Google Scholar 

  29. Hayashi Y, Sumiya T, Takahashi J, Gotoh H, Urushima T, Shoji M (2006) Angew Chem Int 45:958–961

    CAS  Google Scholar 

  30. Kurahashi T, Shinokubo H, Osuka A (2006) Angew Chem 118:6484–6486

    Google Scholar 

  31. Xia Y, Liang Y, Chen Y, Wang M, Jiao L, Huang F, Liu S, Li Y, Yu Z (2007) J Am Chem Soc 12:3470–3471

    Google Scholar 

  32. Zhou F, Sun X, Wu D, Zhang Y, Su H (2017) ChemCatChem 9:2784–2789

    CAS  Google Scholar 

  33. Li W, Liu Q, Ma Q, Zhang T, Ma L, Jameel H, Chang HM (2016) Bioresour Technol 219:753–756

    CAS  PubMed  Google Scholar 

  34. Modrogan E, Valkenberg MH, Hoelderich WF (2009) J Catal 261:177–187

    CAS  Google Scholar 

  35. Zhao X, Wen T, Zhang J, Ye J, Ma Z, Yuan H, Ye X, Wang Y (2017) RSC Adv 7:21678–21685

    CAS  Google Scholar 

  36. Huang F, Su Y, Tao Y, Sun W, Wang W (2018) Fuel 226:417–422

    CAS  Google Scholar 

  37. Atanda L, Mukundan S, Shrotri A, Ma Q, Beltramini J (2015) ChemCatChem 7:781–790

    CAS  Google Scholar 

  38. Guo S, Han S, Mao H, Zeng C, Sun Y, Chi B, Pu J, Li J (2013) Mater Res Bull 48:3022–3036

    Google Scholar 

  39. Drevet R, Dragoé D, Barthés-Labrousse MG, Chaussé A, Andrieux M (2016) Appl Surf Sci 384:442–448

    CAS  Google Scholar 

  40. Zhang X, Zhang D, Sun Z, Xue L, Wang X, Jiang Z (2016) Appl Catal B 196:50–56

    CAS  Google Scholar 

  41. Su M, Li W, Zhang T, Xin H, Li S, Fan W, Ma L (2017) Catal Sci Technol 7:3555–3561

    CAS  Google Scholar 

  42. Hara M (2014) Bull Chem Soc Jpn 87:931–941

    CAS  Google Scholar 

  43. Yu IKM, Tsang DCW (2017) Bioresour Technol 238:716–732

    CAS  PubMed  Google Scholar 

  44. Wang Y, Yang X, Zheng H, Li X, Zhu Y, Li Y (2019) Mol Catal 463:130–139

    CAS  Google Scholar 

  45. Asakawa M, Shrotri A, Kobayashi H, Fukuoka A (2019) Green Chem 21:6146–6153

    CAS  Google Scholar 

  46. Cui J, Tan J, Deng T, Cui X, Zhu Y, Li Y (2016) Green Chem 18:1619–1624

    CAS  Google Scholar 

  47. Wang L, Guo H, Xie Q, Wang J, Hou B, Jia L, Cui J, Li D (2018) Appl Catal A 572:51–60

    Google Scholar 

  48. Binder JB, Cefali AV, Blank JJ, Raines RT (2010) Energy Environ Sci 3:765–771

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Technology R&D Program of China (No. 2018YFB1501601), the National Natural Science Foundation of China (51976212), “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA 21060101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, T., Su, M. et al. Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural and Furfural by a Phosphate-Doped SnO2 Catalyst in γ-Valerolactone-Water System. Catal Lett 150, 3304–3313 (2020). https://doi.org/10.1007/s10562-020-03227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03227-7

Keywords

Navigation