Skip to main content
Log in

Conversion of glucose into 5-hydroxymethylfurfural by carbonaceous solid acid catalysts loaded with Brønsted acid and Lewis acid in biphasic system

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Biomass-derived 5-Hydroxymethylfurfural (HMF) is a vital platform compound for synthesizing biofuel and various high-value chemicals. This work prepared carbonaceous solid acid catalysts with Brønsted acid and Lewis acid using pine biomass as raw materials through chloride salts impregnation, carbonization and sulfonation. The obtained catalysts were characterized by XRD, FTIR, SEM–EDS, BET, and Py-IR. The catalysts were applied to convert glucose into HMF in a biphasic system involving NaCl solution and γ-valerolactone. The results showed that the catalyst of PC-Al-SO3H exhibited larger microspheres and pore sizes compared with the sulfonated catalyst of PC-SO3H without AlCl3 impregnation. Effects of key variables such as reaction temperature, reaction time on conversion of glucose into HMF were examined. By using PC-2Al-SO3H with stronger Lewis acid, glucose conversion and HMF yield achieved 86.53 mol% and 59.62 mol% at 160 °C and 6 h. The cyclic experiments revealed that PC-2Al-SO3H exhibited relatively stable activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A.T. Hoang, H.C. Ong, I.M.R. Fattah, C.T. Chong, C.K. Cheng, R. Sakthivel, Y.S. Ok, Fuel Process. Technol. 223, 106997 (2021)

    Article  CAS  Google Scholar 

  2. P. Gautam, Neha, S.N. Upadhyay, S.K. Dubey, Fuel. 273, 117783 (2020)

    Google Scholar 

  3. K. Alper, K. Tekin, S. Karagoz, A.J. Ragauskas, Sustain Energy Fuels 4, 4390 (2020)

    Article  CAS  Google Scholar 

  4. Q.D. Hou, X.H. Qi, M.N. Zhen, H.L. Qian, Y.F. Nie, C.Y.L. Bai, S.Q. Zhang, X.Y. Bai, M.T. Ju, Green Chem. 23, 119 (2021)

    Article  CAS  Google Scholar 

  5. L.F. Chen, Y.H. Xiong, H. Qin, Z.W. Qi, Chemsuschem. 15, e202102635 (2022)

    Article  CAS  PubMed  Google Scholar 

  6. Q.S. Kong, X.L. Li, H.J. Xu, Y. Fu, Fuel Process. Technol. 209, 106528 (2020)

    Article  CAS  Google Scholar 

  7. X. Kong, Y.F. Zhu, Z. Fang, J.A. Kozinski, I.S. Butler, L.J. Xu, H. Song, X.J. Wei, Green Chem. 20, 3657 (2018)

    Article  CAS  Google Scholar 

  8. L. Hu, L. Lin, Z. Wu, S.Y. Zhou, S.J. Liu, Renew. Sustain. Energy Rev. 74, 230 (2017)

    Article  CAS  Google Scholar 

  9. S.P. Teong, G.S. Yi, Y.G. Zhang, Green Chem. 16, 2015 (2014)

    Article  CAS  Google Scholar 

  10. A.I. Torres, M. Tsapatsis, P. Daoutidis, Comput. Chem. Eng. 42, 130 (2012)

    Article  CAS  Google Scholar 

  11. V. Choudhary, S.H. Mushrif, C. Ho, A. Anderko, V. Nikolakis, N.S. Marinkovic, A.I. Frenkel, S.I. Sandler, D.G. Vlachos, J. Am. Chem. Soc. 135, 3997 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. I.K.M. Yu, D.C.W. Tsang, Bioresour. Technol. 238, 716 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. H. Li, S. Yang, S. Saravanamurugan, A. Riisager, ACS Catal. 7, 3010 (2017)

    Article  CAS  Google Scholar 

  14. W.Q. Wei, S.B. Wu, Chem. Eng. J. 307, 389 (2017)

    Article  CAS  Google Scholar 

  15. D. Garces, E. Diaz, S. Ordonez, Ind. Eng. Chem. Res. 56, 5221 (2017)

    Article  CAS  Google Scholar 

  16. M. Nahavandi, T. Kasanneni, Z.S. Yuan, C.C. Xu, S. Rohani, Acs Sustain. Chem. Eng. 7, 11970 (2019)

    CAS  Google Scholar 

  17. W.Z. Guo, H.J. Heeres, J. Yue, Chem. Eng. J. 381, 122754 (2020)

    Article  CAS  Google Scholar 

  18. Y.J. Pagan-Torres, T.F. Wang, J.M.R. Gallo, B.H. Shanks, J.A. Dumesic, ACS Catal. 2, 930 (2012)

    Article  CAS  Google Scholar 

  19. J. Zhang, J.Z. Chen, J. Energy Chem. 25, 747 (2016)

    Article  Google Scholar 

  20. A. Munyentwali, H. Li, Q.H. Yang, Appl. Catal. A Gen. 633, 118525 (2022)

    Article  CAS  Google Scholar 

  21. J.J. Wang, J.W. Ren, X.H. Liu, J.X. Xi, Q.N. Xia, Y.H. Zu, G.Z. Lu, Y.Q. Wang, Green Chem. 14, 2506 (2012)

    Article  CAS  Google Scholar 

  22. I. Jimenez-Morales, M. Moreno-Recio, J. Santamaria-Gonzalez, P. Maireles-Torres, A. Jimenez-Lopez, Appl. Catal. B-Environ. 164, 70 (2015)

    Article  CAS  Google Scholar 

  23. T.D. Swift, H. Nguyen, Z. Erdman, J.S. Kruger, V. Nikolakis, D.G. Vlachos, J. Catal. 333, 149 (2016)

    Article  CAS  Google Scholar 

  24. H.T. Kreissl, K. Nakagawa, Y.K. Peng, Y. Koito, J.L. Zheng, S.C.E. Tsang, J. Catal. 338, 329 (2016)

    Article  CAS  Google Scholar 

  25. Y. Shen, Y.R. Kang, J.K. Sun, C. Wang, B. Wang, F. Xu, R.C. Sun, Chin. J. Catal. 37, 1362 (2016)

    Article  CAS  Google Scholar 

  26. M.N. Catrinck, E.S. Ribeiro, R.S. Monteiro, R.M. Ribas, M.H.P. Barbosa, R.F. Teofilo, Fuel 210, 67 (2017)

    Article  CAS  Google Scholar 

  27. A. Rezayan, K. Wang, R.F. Nie, J.S. Wang, T.L. Lu, Y.S. Zhang, C.C. Xu, J. Catal. 414, 186 (2022)

    Article  CAS  Google Scholar 

  28. A. Mahajan, P. Gupta, Environ. Chem. Lett. 18, 299 (2020)

    Article  CAS  Google Scholar 

  29. Z.K. Zhang, Z.Y. Zhu, B.X. Shen, L.N. Liu, Energy 171, 581 (2019)

    Article  CAS  Google Scholar 

  30. X. Sun, H.K. Atiyeh, M.X. Li, Y. Chen, Bioresour. Technol. 295, 122252 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. M.G. Mazzotta, D. Gupta, B. Saha, A.K. Patra, A. Bhaumik, M.M. Abu-Omar, Chemsuschem 7, 2342 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. K. Ke, H.R. Ji, X.N. Shen, F.O. Kong, B. Li, Polymers 13, 2096 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. F.R. Tao, H.L. Song, L.J. Chou, RSC Adv. 1, 672 (2011)

    Article  CAS  Google Scholar 

  34. T.M.C. Hoang, E.R.H. van Eck, W.P. Bula, J.G.E. Gardeniers, L. Lefferts, K. Seshan, Green Chem. 17, 959 (2015)

    Article  CAS  Google Scholar 

  35. G. Tsilomelekis, M.J. Orella, Z.X. Lin, Z.W. Cheng, W.Q. Zheng, V. Nikolakis, D.G. Vlachos, Green Chem. 18, 1983 (2016)

    Article  CAS  Google Scholar 

  36. D. Jung, P. Korner, A. Kruse, Biomass Convers. Biorefinery 11, 1155 (2021)

    Article  CAS  Google Scholar 

  37. S.S. Xiong, C. Luo, Z.H. Yu, N. Ji, L.J. Zhu, S.R. Wang, Green Chem. 23, 8458 (2021)

    Article  CAS  Google Scholar 

  38. Y. Yang, C.W. Hu, M.M. Abu-Omar, Green Chem. 14, 509 (2012)

    Article  Google Scholar 

  39. C.D. Jin, N. Xiang, X. Zhu, E. Shuang, K.C. Sheng, X.M. Zhang, Appl. Catal. B-Environ. 285, 119799 (2021)

    Article  CAS  Google Scholar 

  40. P.X. Yan, M. Xia, S.S. Chen, W.Y. Han, H.L. Wang, W.B. Zhu, Green Chem. 22, 5274 (2020)

    Article  CAS  Google Scholar 

  41. F. Shen, S. Sun, X. Zhang, J.R. Yang, M. Qiu, X.H. Qi, Cellulose 27, 3013 (2020)

    Article  CAS  Google Scholar 

  42. F. Huang, W.Z. Li, T.W. Zhang, D.W. Li, Q.Y. Liu, X.F. Zhu, L.L. Ma, Res. Chem. Intermed. 44, 5439 (2018)

    Article  CAS  Google Scholar 

  43. A.K. Das, S. Nandy, S. Bhar, Appl. Organomet. Chem. 35, e6282 (2021)

    Article  CAS  Google Scholar 

  44. D. Zeng, Q. Zhang, S. Chen, S. Liu, G. Wang, Microporous Mesoporous Mater. 219, 54 (2016)

    Article  CAS  Google Scholar 

  45. M.H. Zong, Z.Q. Duan, W.Y. Lou, T.J. Smith, H. Wu, Green Chem. 9, 434 (2007)

    Article  CAS  Google Scholar 

  46. M. Nasrollahzadeh, N.S.S. Bidgoli, N. Shafiei, F. Momenbeik, Int. J. Biol. Macromol. 182, 59 (2021)

    Article  CAS  PubMed  Google Scholar 

  47. G.P. Perez, M.J. Dumont, Chem. Eng. J. 382, 122766 (2020)

    Article  Google Scholar 

  48. R.S. Thombal, V.H. Jadhav, Appl. Catal. A Gen. 499, 213 (2015)

    Article  CAS  Google Scholar 

  49. H.Y. Song, C. Xing, B. Li, W.Z. Shen, ChemistrySelect 1, 301 (2016)

    Article  CAS  Google Scholar 

  50. M. Kruk, M. Jaroniec, Chem. Mater. 13, 3169 (2001)

    Article  CAS  Google Scholar 

  51. A. Ates, Biomass Convers. Biorefinery 13, 9075 (2021)

    Google Scholar 

  52. C.W. Jiang, J.D. Zhu, B. Wang, L. Li, H. Zhong, Chin. J. Chem. Eng. 26, 1270 (2018)

    Article  CAS  Google Scholar 

  53. A. Taguchi, F. Schuth, Microporous Mesoporous Mater. 77, 1 (2005)

    Article  CAS  Google Scholar 

  54. L. Li, T.I. Koranyi, B.F. Sels, P.P. Pescarmona, Green Chem. 14, 1611 (2012)

    Article  CAS  Google Scholar 

  55. F.F. Wang, J. Liu, H. Li, C.L. Liu, R.Z. Yang, W.S. Dong, Green Chem. 17, 2455 (2015)

    Article  CAS  Google Scholar 

  56. A. Penkova, L.F. Bobadilla, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, Appl. Surf. Sci. 317, 241 (2014)

    Article  CAS  Google Scholar 

  57. R. Khumho, S. Yousatit, C. Ngamcharussrivichai, Catalysts 11, 887 (2021)

    Article  CAS  Google Scholar 

  58. M. Rezaie, M. Dinari, A.N. Chermahini, M. Saraji, A. Shahvar, Int. J. Biol. Macromol. 165, 1129 (2020)

    Article  CAS  PubMed  Google Scholar 

  59. S.H. Dhawane, E.G. Al-Sakkari, G. Halder, Catal. Lett. 149, 3508 (2019)

    Article  CAS  Google Scholar 

  60. S.M. Kang, J.X. Fu, G. Zhang, Renew. Sust. Energ. Rev. 94, 340 (2018)

    Article  CAS  Google Scholar 

  61. X. Ye, X.Y. Shi, J.Y. Li, B.B. Jin, J. Cheng, Z.H. Ren, H. Zhong, L.W. Chen, X. Liu, F.M. Jin, T.F. Wang, Chem. Eng. J. 440, 135844 (2022)

    Article  CAS  Google Scholar 

  62. Y. Su, G.G. Chang, Z.G. Zhang, H.B. Xing, B.G. Su, Q.W. Yang, Q.L. Ren, Y.W. Yang, Z.B. Bao, AIChE J. 62, 4403 (2016)

    Article  CAS  Google Scholar 

  63. F. Huang, W.Z. Li, Q.C. Liu, T.W. Zhang, S.X. An, D.W. Li, X.F. Zhu, Fuel Process. Technol. 181, 294 (2018)

    Article  CAS  Google Scholar 

  64. F. Guo, Z. Fang, T.J. Zhou, Bioresour. Technol. 112, 313 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2018YFB1501402).

Author information

Authors and Affiliations

Authors

Contributions

HG contributed to Investigation, Data curation, Formal analysis, and Writing—original draft. LH contributed to Supervision, Writing—review and editing, Conceptualization, and Funding acquisition. HB contributed to Writing—review and editing. ZW contributed to Investigation, Data curation. JX contributed to Investigation, Data curation. CZ contributed to Data curation. XY contributed to Data curation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Long Han.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 286 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Han, L., Baloch, H.A. et al. Conversion of glucose into 5-hydroxymethylfurfural by carbonaceous solid acid catalysts loaded with Brønsted acid and Lewis acid in biphasic system. Res Chem Intermed 49, 4523–4539 (2023). https://doi.org/10.1007/s11164-023-05100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05100-9

Keywords

Navigation