Skip to main content
Log in

Deposited Silver Nanoparticles on Commercial Copper by Galvanic Displacement as an Effective Catalyst for the Reduction of 4‑Nitrophenol in Aqueous Solution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Immobilization of silver nanoparticles (Ag NPs) to improve recyclability is crucial for applications in nanocatalysts. Herein, silver nanoparticles were prepared on copper foil by immersing copper foil in the solution of silver citrate, containing an excess of citric acid. The nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDS), and atomic force microscope (AFM). The catalytic activity of silver nanoparticle on copper was studied in reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of excess borohydride. The catalyst can be easily recycled and showed excellent reusability as a conversion higher than 95% was achieved after 30 cycles. Thus, the preparation of nanoparticle aggregates on copper foil has been proven a feasible, straightforward, and effective protocol, which would facilitate the applications of Ag NPs in environmental control.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Zhang J, Zhang M, Tang K, Verpoort F (2014) Small 10:32

    Article  CAS  Google Scholar 

  2. Kumar KS, Kumar VB, Paik PJ (2013) Nanoparticle 1:1

    Google Scholar 

  3. Zhu BB, Lu DN, Ge J, Liu Z (2011) Acta Biomater 7:2131–2138

  4. Mashhadizadeh MH, Karami Z (2011) J Hazard Mater 190:1023

    Article  CAS  Google Scholar 

  5. Ai L, Zeng C, Wang Q (2011) Catal Commun 14:68

    Article  CAS  Google Scholar 

  6. Gupta S, Uhlmann P, Agrawal M, Chapuis S, Oertel U, Stamm M (2008) Macromolecules 41:2874

    Article  CAS  Google Scholar 

  7. Chen GF, Lu JR, Lam C, Yu Y (2014) Analyst 139:5793

    Article  CAS  Google Scholar 

  8. Taheri S, Baier G, Majewski P, Barton M, Forch R, Landfester K, Vasilev K (2014) Nanotechnology 25:305102

    Article  Google Scholar 

  9. Wang RZ, Wang Z, Lin S, Deng C, Li F, Chen Z, He H (2015) RSC Adv 5:40141

    Article  CAS  Google Scholar 

  10. Wang S, Zhang J, Yuan P, Sun Q, Jia Y, Yan W, Chen Z, Xu Q (2015) J Mater Sci 50:1323

    Article  CAS  Google Scholar 

  11. Qu J-C, Ren C-L, Dong Y-L, Chang Y-P, Zhou M, Chen X-G (2012) Chem Eng J 211–212:412

    Article  Google Scholar 

  12. Huang Q, Wang J, Wei W, Yan Q, Wu C, Zhu X (2015) J Hazard Mater 283:123

    Article  CAS  Google Scholar 

  13. Song Y, Cui K, Wang L, Chen S (2009) Nanotechnology 20:105501

    Article  Google Scholar 

  14. Kondo T, Lee SM, Malicki M, Domercq B, Marder SR, Kippelen B (2008) Adv Funct Mater 18:1112

    Article  CAS  Google Scholar 

  15. Wang DH, Park KH, Seo JH, Seifter J, Jeon JH, Kim JK, Park JH, Park OO, Heeger AJ (2011) Adv Energy Mater 1:766

    Article  CAS  Google Scholar 

  16. Nguyen VH, Shim J-J (2011) Synth Met 161:2078

    Article  CAS  Google Scholar 

  17. Zhu J, Zhang Y, Lu D, Zare RN, Ge J, Liu Z (2013) Chem Commun 49:6090

    Article  CAS  Google Scholar 

  18. Zhao C, Li X, Li L, Cheng G, Gong X, Zheng J (2013) Langmuir 29:1517

    Article  CAS  Google Scholar 

  19. Zhu Z, Guo X, Wu S, Zhang R, Wang J, Li L (2011) Ind Eng Chem Res 50:13848

    Article  CAS  Google Scholar 

  20. Xu LQ, Yap BSM, Wang R, Neoh K-G, Kang E-T, Fu GD (2014) Ind Eng Chem Res 53:3116

    Article  CAS  Google Scholar 

  21. Zhu H, Ma Z, Clark JC, Pan Z, Overbury SH, Dai S (2007) Appl Catal A 326:89

    Article  CAS  Google Scholar 

  22. Lam E, Hrapovic S, Majid E, Chong JH, Luong JH (2012) Nanoscale 4:997

    Article  CAS  Google Scholar 

  23. Corbett JF (1999) Dyes Pigm 41:127–136

    Article  CAS  Google Scholar 

  24. Rode CV, Vaidya MJ, Chaudhari RV (1999) Org Process Res Dev 3:465–470

    Article  CAS  Google Scholar 

  25. Crossley ML (1922) Ind Eng Chem 14:802–804

    Article  CAS  Google Scholar 

  26. Lakshmi Kantam M, Chakravarti R, Pal U, Sreedhar B, Bhargava S (2008) Adv Synth Catal 350:822–827

    Article  Google Scholar 

  27. Sugimori A (1961) Bull Chem Soc Jpn 34:407–411

    Article  CAS  Google Scholar 

  28. Rizhi C, Yan D, Weihong X, Nanping X (2007) Chin J Chem Eng 15:884–888

    Article  Google Scholar 

  29. Belousov VM, Palchevskaya TA, Bogutskaya LV, Zyuzya LA (1990) J Mol Catal 60:165–172

    Article  CAS  Google Scholar 

  30. Vaidya MJ, Kulkarni SM, Chaudhari RV (2003) Org Process Res Dev 7:202–208

    Article  CAS  Google Scholar 

  31. Chen R, Du Y, Xing W, Xu N (2006) Chin J Chem Eng 14:665–669

    Article  CAS  Google Scholar 

  32. Goswami N, Rahman ML, Huque ME, Qaisuddin M (1984) Chem Technol Biotechnol 34:195–202

    Article  CAS  Google Scholar 

  33. Chen R, Wang Q, Du Y, Xing W, Xu N (2009) Chem Eng J 145:371–376

    Article  CAS  Google Scholar 

  34. Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237–243

    Article  CAS  Google Scholar 

  35. Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) J Phys Chem C 111:4596–4605

    Article  CAS  Google Scholar 

  36. Pradhan N, Pal A, Pal T (2001) Langmuir 17:1800–1802

    Article  CAS  Google Scholar 

  37. Praharaj S, Nath S, Ghosh SK, Kundu S, Pal T (2004) Langmuir 20:9889–9892

    Article  CAS  Google Scholar 

  38. Ghosh SK, Mandal M, Kundu S, Nath S, Pal T (2004) Appl Catal A 268:61–66

    Article  CAS  Google Scholar 

  39. Jana S, Ghosh SK, Nath S, Pande S, Praharaj S, Panigrahi S, Basu S, Endo T, Pal T (2006) Appl Catal A 313:41–48

    Article  CAS  Google Scholar 

  40. Lu Y, Mei Y, Schrinner M, Ballauff M, Moller MW, Breu J (2007) J Phys Chem C 111:7676–7681

    Article  CAS  Google Scholar 

  41. Lu Y, Mei Y, Ballauff M (2006) J Phys Chem B 110:3930–3937

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Azadbakht.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadbakht, R., Menati, S., Amiri Rudbari, H. et al. Deposited Silver Nanoparticles on Commercial Copper by Galvanic Displacement as an Effective Catalyst for the Reduction of 4‑Nitrophenol in Aqueous Solution. Catal Lett 150, 3214–3222 (2020). https://doi.org/10.1007/s10562-020-03219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03219-7

Keywords

Navigation