Skip to main content
Log in

Relationship Between Oxygen-Containing Groups and Acidity of Graphene Oxide Supported Mn-Based SCR Catalysts and the Effects on the Catalytic Activity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) with abundant oxygen-containing groups was chosen as the support for the NH3-SCR catalysts. The as-prepared catalysts were systematically characterized to elucidate the effects of the surface properties and the morphological structure on catalytic activity by Raman, XPS, XRD, SEM, TEM, BET, NH3-TPD, and H2-TPR. It was found that compared with widely researched Graphene (GR), abundant oxygen-containing groups on the surface of GO provided the load sites and further promoted the dispersion of active component, which indicating the much more active sites exposed and further the better catalytic activity shown. Furthermore, the oxygen-containing groups like hydroxyl (-OH) and carboxyl (-COOH) could provide some Brønsted acid sites. After the loading of MnOx, the degree of graphitization of GO increased sharply, indicating the better electron transport and strong chemical interaction between GO and MnOx. Furthermore, the best load amount was found and the acidity was the main reason for the optimalizing performance on Mn-5/GO at low temperature. Besides, not only large specific area, but also outstanding redox performance and high dispersion of active component all contributed to the excellent performance of Mn-5/GO. Over all, this work formulated the advantages of GO worked as the support for SCR catalysts and significantly extended the cognition of GO and the selection basis of supports for the low-temperature NH3-SCR reaction.

Graphic abstract

The abundant oxygen-containing groups on the GO surface promoted the dispersion of the active material (MnOx) and also provided some weak acid sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Paolucci C, Khurana I, Parekh AA et al (2017) Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357:898. https://doi.org/10.1126/science.aan5630

    Article  CAS  PubMed  Google Scholar 

  2. Chen L, Li JH, Ablikim W et al (2011) CeO2-WO3 Mixed Oxides for the Selective Catalytic Reduction of NOx by NH3 Over a Wide Temperature Range. Catal Lett 141:1859–1864. https://doi.org/10.1007/s10562-011-0701-4

    Article  CAS  Google Scholar 

  3. Paolucci C, Verma AA, Bates SA et al (2014) Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cu-SSZ-13. Angewandte Chemie-International Edition 53:11828–11833. https://doi.org/10.1002/anie.201407030

    Article  CAS  PubMed  Google Scholar 

  4. Zheng L, Zhou M, Huang Z et al (2016) Self-Protection Mechanism of Hexagonal WO3-Based DeNO(x) Catalysts against Alkali Poisoning. Environ Sci Technol 50:11951–11956. https://doi.org/10.1021/acs.est.6b03203

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Wang P, Fang P et al (2017) Design strategies for SCR catalysts with improved N2 selectivity: the significance of nano-confining effects by titanate nanotubes. Environmental Science: Nano 4:437–447. https://doi.org/10.1039/c6en00627b

    Article  CAS  Google Scholar 

  6. Jiang HX, Zhao J, Jiang DY, Zhang MH (2014) Hollow MnOx-CeO2 Nanospheres Prepared by a Green Route: A Novel Low-Temperature NH3-SCR Catalyst. Catal Lett 144:325–332. https://doi.org/10.1007/s10562-013-1113-4

    Article  CAS  Google Scholar 

  7. Schill L, Putluru SSR, Fehrmann R, Jensen AD (2014) Low-Temperature NH3-SCR of NO on Mesoporous Mn0.6Fe0.4/TiO2 Prepared by a Hydrothermal Method. Catal Lett 144:395–402. https://doi.org/10.1007/s10562-013-1176-2

    Article  CAS  Google Scholar 

  8. Huang Z, Zhu Z, Liu Z, Liu Q (2003) Formation and reaction of ammonium sulfate salts on V2O5/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures. J Catal 214:213–219

    Article  CAS  Google Scholar 

  9. Liu Z, Yuan L, Zhu T, Hang S, Zhu J (2014) Selective catalytic reduction of NOX by NH3 over Mn-Promoted V2O5/TiO2 Catalyst. Ind Eng Chem Res 53:12964–12970

    Article  CAS  Google Scholar 

  10. Lietti L, Nova I, Forzatti P (2000) Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5-WO3 and V2O5-MoO3 catalysts. Top Catal 11:111–122. https://doi.org/10.1023/a:1027217612947

    Article  Google Scholar 

  11. Kim YJ, Kwon HJ, Heo I et al (2012) Mn–Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust. Appl Catal, B 126:9–21

    Article  CAS  Google Scholar 

  12. Stanciulescu M, Caravaggio G, Dobri A et al (2012) Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts. Appl Catal, B 123–124:229–240

    Article  Google Scholar 

  13. Xie A, Tao Y, Jin X et al (2019) A gamma-Fe2O3-modified nanoflower-MnO2/attapulgite catalyst for low temperature SCR of NOx with NH3. New J Chem 43:2490–2500. https://doi.org/10.1039/c8nj04524k

    Article  CAS  Google Scholar 

  14. Chuang KH, Lu CY, Wey MY, Huang YN (2011) NO removal by activated carbon-supported copper catalysts prepared by impregnation, polyol, and microwave heated polyol processes. Appl Catal a-Gen 397:234–240. https://doi.org/10.1016/j.apcata.2011.03.003

    Article  CAS  Google Scholar 

  15. Tseng H-H, Lu C-Y, Chang F-Y, Wey M-Y, Cheng H-T (2011) Catalytic removal of NO and PAHs over AC-supported catalysts from incineration flue gas: Bench-scale and pilot-plant tests. Chem Eng J 169:135–143. https://doi.org/10.1016/j.cej.2011.02.069

    Article  CAS  Google Scholar 

  16. Li Q, Yang H, Ma Z, Zhang X (2012) Selective catalytic reduction of NO with NH3 over CuOX-carbonaceous materials. Catal Commun 17:8–12. https://doi.org/10.1016/j.catcom.2011.10.008

    Article  CAS  Google Scholar 

  17. Galvez ME, Lazaro MJ, Moliner R (2005) Novel activated carbon-based catalyst for the selective catalytic reduction of nitrogen oxide. Catal Today 102:142–147. https://doi.org/10.1016/j.cattod.2005.02.020

    Article  CAS  Google Scholar 

  18. Lu P, Li C, Zeng G et al (2010) Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria. Appl Catal, B 96:157–161. https://doi.org/10.1016/j.apcatb.2010.02.014

    Article  CAS  Google Scholar 

  19. Wang M, Liu H, Huang Z-H, Rang F (2014) Activated carbon fibers loaded with MnO2 for removing NO at room temperature. Chem Eng J 256:101–106. https://doi.org/10.1016/j.cej.2014.06.108

    Article  CAS  Google Scholar 

  20. Yoon KS, Ryu SK (2010) Removal of NO using surface modified activated carbon fiber (ACF) by impregnation and heat-treatment of propellant waste. Korean J Chem Eng 27:1882–1886. https://doi.org/10.1007/s11814-010-0294-4

    Article  CAS  Google Scholar 

  21. Athappan A, Sattler ML, Sethupathi S (2015) Selective catalytic reduction of nitric oxide over cerium-doped activated carbons. J Environ Chem Eng 3:2502–2513

    Article  CAS  Google Scholar 

  22. Cai S, Hu H, Li H, Shi L, Zhang D (2016) Design of multi-shell Fe2O3@MnO(x)@CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2 tolerance. Nanoscale 8:3588–3598. https://doi.org/10.1039/c5nr08701e

    Article  CAS  PubMed  Google Scholar 

  23. Fang C, Zhang D, Cai S et al (2013) Low-temperature selective catalytic reduction of NO with NH(3) over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale 5:9199–9207. https://doi.org/10.1039/c3nr02631k

    Article  CAS  PubMed  Google Scholar 

  24. Lou X, Liu P, Li J, Li Z, He K (2014) Effects of calcination temperature on Mn species and catalytic activities of Mn/ZSM-5 catalyst for selective catalytic reduction of NO with ammonia. Appl Surf Sci 307:382–387. https://doi.org/10.1016/j.apsusc.2014.04.041

    Article  CAS  Google Scholar 

  25. Wang X, Zheng Y, Lin J (2013) Highly dispersed Mn-Ce mixed oxides supported on carbon nanotubes for low-temperature NO reduction with NH3. Catal Commun 37:96–99. https://doi.org/10.1016/j.catcom.2013.03.035

    Article  CAS  Google Scholar 

  26. Wu C, Sun X, Shen B, Williams PT (2014) Evaluation of carbon nanotubes produced from toluene steam reforming as catalyst support for selective catalytic reduction of NOX. J Energy Inst 87:367–371. https://doi.org/10.1016/j.joei.2014.03.024

    Article  CAS  Google Scholar 

  27. Wang X, Zheng Y, Xu Z, Liu Y, Wang X (2014) Low-temperature NO reduction with NH3 over Mn-CeOx/CNT catalysts prepared by a liquid-phase method. Catal Sci Technol 4:1738–1741. https://doi.org/10.1039/c4cy00026a

    Article  CAS  Google Scholar 

  28. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  29. Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308–1308. https://doi.org/10.1126/science.1156965

    Article  CAS  PubMed  Google Scholar 

  30. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. https://doi.org/10.1038/nature07719

    Article  CAS  PubMed  Google Scholar 

  31. Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75. https://doi.org/10.1039/c1cy00361e

    Article  CAS  Google Scholar 

  32. Martin I, Blanter YM, Morpurgo AF (2008) Topological confinement in bilayer graphene. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.100.036804

    Article  PubMed  Google Scholar 

  33. Xavier LJP, Pereira JM Jr, Chaves A, Farias GA, Peeters FM (2010) Topological confinement in graphene bilayer quantum rings. Appl Phys Lett. https://doi.org/10.1063/1.3431618

    Article  Google Scholar 

  34. Li F, Zhao J, Chen Z (2011) Fe-Anchored Graphene Oxide: A Low-Cost and Easily Accessible Catalyst for Low-Temperature CO Oxidation. J Phys Chem C 116:2507–2514

    Article  Google Scholar 

  35. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. ACS Nano 4:2822–2830. https://doi.org/10.1021/nn901311t

    Article  CAS  PubMed  Google Scholar 

  36. Sun L, Zhang Y, Li J, Yi T, Yang X (2016) Graphene-Oxide-Directed Hydrothermal Synthesis of Ultralong M(VO3)n Composite Nanoribbons. Chem Mater 28:4815–4820. https://doi.org/10.1021/acs.chemmater.6b02058

    Article  CAS  Google Scholar 

  37. Sun L, Li K, Zhang Z et al (2019) MnO2–Graphene-oxide-scroll–TiO2 composite catalyst for low-temperature NH3-SCR of NO with good steam and SO2 resistance obtained by low-temperature carbon-coating and selective atomic layer deposition. Catal Sci Technol 9:1602–1608. https://doi.org/10.1039/c9cy00132h

    Article  CAS  Google Scholar 

  38. Ye B, Lee M, Jeong B et al (2019) Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOX with NH3. Catal Today 328:300–306. https://doi.org/10.1016/j.cattod.2018.12.007

    Article  CAS  Google Scholar 

  39. Lu L, Tian H, He J, Yang Q (2016) Graphene–MnO2 Hybrid Nanostructure as a New Catalyst for Formaldehyde Oxidation. J Phys Chem C 120:23660–23668. https://doi.org/10.1021/acs.jpcc.6b08312

    Article  CAS  Google Scholar 

  40. Lu X, Song C, Chang C-C, Teng Y, Tong Z, Tang X (2014) Manganese Oxides Supported on TiO2–Graphene Nanocomposite Catalysts for Selective Catalytic Reduction of NOx with NH3 at Low Temperature. Ind Eng Chem Res 53:11601–11610. https://doi.org/10.1021/ie5016969

    Article  CAS  Google Scholar 

  41. Singoredjo L, Korver R, Kapteijn F, Moulijn J (2010) Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Cheminform 1(4):297–316

    Google Scholar 

  42. Lu X, Song C, Jia S, Tong Z, Tang X, Teng Y (2015) Low-temperature selective catalytic reduction of NOx with NH3 over cerium and manganese oxides supported on TiO2–graphene. Chem Eng J 260:776–784. https://doi.org/10.1016/j.cej.2014.09.058

    Article  CAS  Google Scholar 

  43. Su W, Lu X, Jia S, Wang J, Ma H, Xing Y (2015) Catalytic Reduction of NOx Over TiO2–Graphene Oxide Supported with MnOx at Low Temperature. Catal Lett 145:1446–1456. https://doi.org/10.1007/s10562-015-1550-3

    Article  CAS  Google Scholar 

  44. Jiao J-Z, Li S-H, Huang B-C (2015) Preparation of Manganese Oxides Supported on Graphene Catalysts and Their Activity in Low-Temperature NH3-SCR. Acta Phys-Chim Sin 31:1383–1390. https://doi.org/10.3866/pku.whxb201504292

    Article  CAS  Google Scholar 

  45. Xiao X, Sheng Z, Yang L, Dong F (2016) Low-temperature selective catalytic reduction of NOx with NH3 over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method. Catal Sci Technol 6:1507–1514. https://doi.org/10.1039/c5cy01228g

    Article  CAS  Google Scholar 

  46. Wang Y, Kang Y, Ge M, Xiu Zhang XZ, Zhan L (2018) Cerium and tin oxides anchored onto reduced graphene oxide for selective catalytic reduction of NO with NH3 at low temperatures. RSC Adv 8:36383–36391. https://doi.org/10.1039/c8ra05151h

    Article  CAS  Google Scholar 

  47. Chen C-M, Zhang Q, Yang M-G, Huang C-H, Yang Y-G, Wang M-Z (2012) Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors. Carbon 50:3572–3584. https://doi.org/10.1016/j.carbon.2012.03.029

    Article  CAS  Google Scholar 

  48. Wang X, Huang S, Zhu L, Tian X, Li S, Tang H (2014) Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon 69:101–112

    Article  CAS  Google Scholar 

  49. Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  50. Cui H, Zheng J, Zhu Y, Wang Z, Jia S, Zhu Z (2015) Graphene frameworks synthetized with Na2CO3 as a renewable water-soluble substrate and their high rate capability for supercapacitors. J Power Sources 293:143–150. https://doi.org/10.1016/j.jpowsour.2015.05.068

    Article  CAS  Google Scholar 

  51. Wang J, Zhang G, Zhang P (2018) Graphene-assisted photothermal effect on promoting catalytic activity of layered MnO2 for gaseous formaldehyde oxidation. Appl Catal, B 239:77–85. https://doi.org/10.1016/j.apcatb.2018.08.008

    Article  CAS  Google Scholar 

  52. Jingjing D, Yao Z, Sheng C, Youhong T, Mietek J, Shizhang Q (2013) Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chem Commun 49:7705–7707

    Article  Google Scholar 

  53. Lei Z, Shi F, Lu L (2012) Incorporation of MnO2-Coated Carbon Nanotubes between Graphene Sheets as Supercapacitor Electrode. ACS Appl Mater Interfaces 4:1058–1064. https://doi.org/10.1021/am2016848

    Article  CAS  PubMed  Google Scholar 

  54. Wang D, Peng Y, Yang Q, Hu F, Li J, Crittenden J (2019) NH3-SCR performance of WO3 blanketed CeO2 with different morphology: Balance of surface reducibility and acidity. Catal Today 332:42–48. https://doi.org/10.1016/j.cattod.2018.07.048

    Article  CAS  Google Scholar 

  55. Zhang Y, Zheng Y, Wang X, Lu X (2015) Preparation of Mn–FeOx/CNTs catalysts by redox co-precipitation and application in low-temperature NO reduction with NH3. Catal Commun 62:57–61. https://doi.org/10.1016/j.catcom.2014.12.023

    Article  CAS  Google Scholar 

  56. Yang S, Wang C, Li J, Yan N, Ma L, Chang H (2011) Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study. Appl Catal B 110:71–80. https://doi.org/10.1016/j.apcatb.2011.08.027

    Article  CAS  Google Scholar 

  57. Sun MH, Huang SZ, Chen LH et al (2016) Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Cheminform 47:3479

    Google Scholar 

  58. Arena F, Torre T, Raimondo C, Parmaliana A (2001) Structure and redox properties of bulk and supported manganese oxide catalysts. PCCP 3:1911–1917. https://doi.org/10.1039/b100091h

    Article  CAS  Google Scholar 

  59. Lei Z, Shi L, Lei H, Zhang J, Gao R, Zhang D (2014) Rational Design of High-Performance DeNOx Catalysts Based on MnxCo3–xO4 Nanocages Derived from Metal-Organic Frameworks. ACS Catal 4:1753–1763

    Article  Google Scholar 

  60. Zeng Y, Zhang S, Wang Y, Liu G, Zhong Q (2017) The effects of calcination atmosphere on the catalytic performance of Ce-doped TiO2 catalysts for selective catalytic reduction of NO with NH3. RSC Adv 7:23348–23354. https://doi.org/10.1039/c7ra03166a

    Article  CAS  Google Scholar 

  61. Liu Y, Xu J, Li H et al (2015) Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts. J Mater Chem A 3:11543–11553. https://doi.org/10.1039/c5ta01212k

    Article  CAS  Google Scholar 

  62. Yu S, Jiang N, Zou W, Li L, Tang C, Dong L (2016) A general and inherent strategy to improve the water tolerance of low temperature NH3 -SCR catalysts via trace SiO2 deposition. Catal Commun 84:75–79. https://doi.org/10.1016/j.catcom.2016.06.001

    Article  CAS  Google Scholar 

  63. Tang X, Li C, Yi H et al (2018) Facile and fast synthesis of novel Mn2CoO4@rGO catalysts for the NH3 -SCR of NOx at low temperature. Chem Eng J 333:467–476. https://doi.org/10.1016/j.cej.2017.09.179

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFC0210203), the Natural Science Foundation of Shanxi Province (No. 201701D121128) and the Research Project of the State Key Laboratory of Coal Conversion (No. 2018BWZ002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Zheng or Zhanggen Huang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Zheng, J., Liu, Y. et al. Relationship Between Oxygen-Containing Groups and Acidity of Graphene Oxide Supported Mn-Based SCR Catalysts and the Effects on the Catalytic Activity. Catal Lett 150, 3243–3255 (2020). https://doi.org/10.1007/s10562-020-03218-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03218-8

Navigation