Skip to main content

Advertisement

Log in

Temperature-Responsive HCl-Releasing Catalysts for Cellulose Hydrolysis into Glucose

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Conversion of cellulose into glucose is one of the important approaches to biomass utilization, but the insolubility of cellulose in water makes it difficult to hydrolyze particularly in the case of heterogeneous catalysis due to the mass transfer obstacle between solid catalyst particles and cellulose particles. Temperature-responsive HCl-releasing catalysts have unique characteristic as they allow to catalyze the hydrolysis reaction of cellulose under homogeneous catalysts while the released HCl can be recovered and reused via simple cooling after reaction. In this paper, three mesoporous N-doped carbon materials (CNs) with temperature-responsive HCl-releasing ability were synthesized by carbonization of aminoguanidine hydrochloride at 400, 500 and 600 °C respectively. The basicity and the temperature-responsive HCl-releasing behavior of the as-prepared CNs are examined by means of acid–base titration and high temperature releasing experiment. The experimental results show that, of the three samples, CN-400 possesses the maximum HCl intake of 1.28 mmol HCl/g and can release about 1.15 mmol HCl/g when being heated to 220 °C. Employing CN-400·nHCl as the catalyst, a total reducing sugars (TRS) yield of 81.1% and 61.1% glucose yield can be obtained after reaction under 220 °C for 60 min. The considerable basic sites are derived from the pyridine nitrogen and indispensable for HCl-releasing to catalyze cellulose hydrolysis. Furthermore, CN-400·nHCl possesses excellent catalytic stability.

Graphic Abstract

Temperature-responsive acid-releasing catalysts provide a novel and green solid-liquid phase cellulose conversion reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Onel O, Niziolek AM, Floudas CA (2015) Curr Opin Chem Eng 9:66–74

    Google Scholar 

  2. Delidovich I, Leonhard K, Palkovits R (2014) Energy Environ Sci 7:2803–2830

    CAS  Google Scholar 

  3. Jin F, Enomoto H (2011) Energy Environ Sci 4:382–397

    CAS  Google Scholar 

  4. Gallezot P (2012) Chem Soc Rev 41:1538–1558

    CAS  PubMed  Google Scholar 

  5. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) Green Chem 13:754–793

    CAS  Google Scholar 

  6. Yao L, Liu X, Zhang Y, Jiang K, Wang J, Zhang SJ (2017) ACS Sustainable Chem Eng 5:3417–3428

    Google Scholar 

  7. Moliner M, Roman YL, Davis ME (2010) Natl Acad Sci USA 107:6164–6178

    CAS  Google Scholar 

  8. Nguyen H, Nikolakis V, Vlachos DG (2016) ACS Catal 6:1497–1504

    CAS  Google Scholar 

  9. Silva MJD, De CM (2018) Oliveira. Curr Catal 7:26–34

    Google Scholar 

  10. Iskak NAM, Julkapli NM, Hamid SBA (2017) Cellulose 24:1–13

    Google Scholar 

  11. Yang L, Yang X, Tian E, Lin H (2016) Chemsuschem 9:36–41

    CAS  PubMed  Google Scholar 

  12. Onda A, Ochi T, Yanagisawa K (2009) Top Catal 52:801–807

    CAS  Google Scholar 

  13. Lai DM, Deng L, Li J, Liao B, Guo QX, Fu Y (2011) Chemsuschem 4:55–58

    CAS  PubMed  Google Scholar 

  14. Takagaki A, Tagusagawa C, Domen K (2008) Chem Commun 42:5363–5365

    Google Scholar 

  15. Tian J, Wang J, Zhao S, Jiang C, Zhang X, Wang X (2010) Cellulose 17:587–594

    CAS  Google Scholar 

  16. Zhao S, Cheng M, Li J, Tian J, Wang X (2011) Chem Commun 47:2176–2188

    CAS  Google Scholar 

  17. Qi X, Yan L, Shen F, Qiu M (2019) Bioresour Technol 273:687–691

    CAS  PubMed  Google Scholar 

  18. Su J, Mo Q, Feng S, Qi X (2018) Cellulose 25:17–22

    CAS  Google Scholar 

  19. Saha D, Bramer SEV, Orkoulas G, Ho HC, Chen J, Henley DK (2017) Carbon 121:257–266

    CAS  Google Scholar 

  20. Zou K, Deng Y, Chen J, Qian Y, Yang Y, Li Y, Chen G (2018) J Power Sources 378:579–588

    CAS  Google Scholar 

  21. Cowan JJ, Bailey AJ, Heintz RA, Bao TD, Hardcastle KI, Hill CL, Weinstock IA (2001) Inorganic Chem 40:6666–6675

    CAS  Google Scholar 

  22. Han S, Hou W, Xu J, Li Z (2004) Colloid Polym Sci 282:1286–1291

    CAS  Google Scholar 

  23. Ngee ELS, Gao Y, Xi C, Lee TM, Hu Z, Dan Z, Ning Y (2014) Eng Chem Res 53:14225–14233

    CAS  Google Scholar 

  24. Talapaneni SN, Mane GP, Mano A, An C, Dhawale DS (2012) Chemsuschem 5:700–718

    CAS  PubMed  Google Scholar 

  25. DeryloMarczewska A, Goworek J, Pikus S, Kobylas E, Zgrajka W (2002) Langmuir 18:7538–7543

    CAS  Google Scholar 

  26. Sheng ZH, Shao L, Chen JJ, Bao WJ, Xia XH (2011) ACS Nano 5:4350–4358

    CAS  PubMed  Google Scholar 

  27. Xu F, Minniti M, Barone P, Sindona A, Bonanno A, Oliva A (2008) Carbon 46:1489–1496

    CAS  Google Scholar 

  28. Raymundo-Pinero E, Cazorla-Amoros D, Linares-Solano A (2003) Carbon 41:1925–1932

    CAS  Google Scholar 

  29. Liu C, Carraher JM, Swedberg JL, Herndon CR (2014) Fleitman. ACS Catal 4:4295–4298

    CAS  Google Scholar 

  30. Qiu Y, Gao L (2003) Chem Commun 9:2378–2379

    Google Scholar 

  31. Gromov NV, Medvedeva TB, Taran OP, Bukhtiyarov AV, Aymonier C, Prosvirin IP, Parmon VN (2018) Top Catal 61:1912–1927

    CAS  Google Scholar 

  32. Wang JG, Zhang YY, Wang Y, Zhu LW, Cui HY (2016) J Fuel Chem Technol 44:1341–1348

    CAS  Google Scholar 

  33. Guo H, Lian Y, Yan L, Qi X, Smith RL (2013) Green Chem 15:2167–2174

    CAS  Google Scholar 

  34. Hegner J, Pereira KC, DeBoef B, Lucht BL (2010) Tetrahedron Lett 51:2356–2358

    CAS  Google Scholar 

  35. Gliozzi G, Innorta A, Mancini A, Bortolo R, Perego C (2014) Appl Catal B 145:24–33

    CAS  Google Scholar 

  36. Kobayashi H, Komanoya T, Hara K, Fukuoka A (2010) Chemsuschem 3:440–453

    CAS  PubMed  Google Scholar 

  37. Amarasekara AS, Wiredu B (2014) Bio Energy Res 7:1237–1243

    CAS  Google Scholar 

  38. Tong DS, Xia X, Luo XP, Wu LM, Lin CX (2013) Appl Clay Sci 74:147–153

    CAS  Google Scholar 

  39. Gromov NV, Medvedeva TB, Taran OP, Bukhtiyarov AV, Aymonier C (2018) Top Catal 61:1912–1927

    CAS  Google Scholar 

  40. Su J, Qiu M, Shen F, Qi X (2017) Cellulose 25:17–22

    Google Scholar 

  41. Kim SJ, Dwiatmoko AA, Choi JW, Suh YW, Dong JS, Oh M (2010) Bioresour Technol 101:8273–8279

    CAS  PubMed  Google Scholar 

  42. Chen G, Wang X, Jiang Y, Mu X, Liu H (2018) Catal Today 319:25–30

    Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundations of China (21978158, 21506118 and 51536009), the Public Welfare Category of Key R&D Programs in Shandong Province (2018GGX107003) and the Natural Science Foundation of Shandong Province (ZR2018BB062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyou Cui or Weiming Yi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, Y., Wang, J. et al. Temperature-Responsive HCl-Releasing Catalysts for Cellulose Hydrolysis into Glucose. Catal Lett 150, 3184–3195 (2020). https://doi.org/10.1007/s10562-020-03215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03215-x

Keywords

Navigation