Skip to main content
Log in

Highly Efficient and Recyclable ZIF-67 Catalyst for the Degradation of Tetracycline

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, the ZIF-67 catalyst is synthesized by reaction of cobalt nitrate hexahydrate with 2-methylimidazole at room temperature. The ZIF-67 catalyst shows excellent efficiency for the degradation of tetracycline (TC) in the presence of hydrogen peroxide. Moreover, the effects of catalyst dose, hydrogen peroxide concentration and tetracycline concentration for the degradation of tetracycline have also been studied. The free-radical quenching experiments indicate that the hydroxyl radical (⋅OH) is the predominant active species in the degradation. In addition, the catalyst has been successfully reused four times without obvious decrease in the degradation efficiency of TC, revealing the great reusability and stability of ZIF-67.

Graphic Abstract

1. The ZIF-67 catalyst exhibites excellent efficiency for the degradation of tetracycline. 2. The ZIF-67 catalyst is synthesized from cobalt nitrate hexahydrate and 2-methylimidazole. 3. The free radical quenching experiments indicates that the hydroxyl radical (⋅OH) is the predominant active species in the degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu F, Astruc D (2018) Coord Chem Rev 356:147

    CAS  Google Scholar 

  2. Lu F, Astruc D (2020) Coord Chem Rev 408:213180

    CAS  Google Scholar 

  3. Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, Alvarez P (2010) Environ Sci Technol 44:7220

    PubMed  Google Scholar 

  4. Jia X, Ma J, Xia F, Xu Y, Gao J, Xu J (2018) Nat Commun 9:933

    PubMed  PubMed Central  Google Scholar 

  5. Jia X, Ma J, Xia F, Gao J, Xu J (2019) Nat Commun 10:2338

    PubMed  PubMed Central  Google Scholar 

  6. Elmaci G, Ertürk AS, Sevim M, Metin Ö (2019) Int J Hydrogen Energy 44:17995

    Google Scholar 

  7. Sarmah AK, Michael MT, Boxall AB (2006) Chemosphere 65(5):725

    CAS  PubMed  Google Scholar 

  8. Ying GG, He LY, Ying AJ, Zhang QQ, Liu YS, Zhao JL (2017) Environ Sci Technol 51(3):1072

    CAS  PubMed  Google Scholar 

  9. Ahmed MB, Zhou JL, Ngo HH, Guo W (2015) Sci Total Environ 532:112

    CAS  PubMed  Google Scholar 

  10. Chen J, Xiao X, Wang Y, Lu M, Zeng X (2019) J Alloys Compd 800:88

    CAS  Google Scholar 

  11. Khan MH, Bae H, Jung JY (2010) J Hazard Mater 181(1–3):659

    CAS  PubMed  Google Scholar 

  12. Yu F, Li Y, Han S, Ma J (2016) Chemosphere 153:365

    CAS  PubMed  Google Scholar 

  13. Nezamzadeh-Ejhieh A, Arezoo S (2014) Chemosphere 107:136

    CAS  PubMed  Google Scholar 

  14. Jin JH, Yang ZH, Xiong WP, Zhou YY, Xu R, Zhang YR, Cao J, Li X, Zhou CY (2019) Sci Total Environ 650:408

    CAS  PubMed  Google Scholar 

  15. Xiong WP, Tong J, Yang ZH, Zeng GM, Zhou YY, Wang DB, Song PP, Xu R, Zheng C, Cheng M (2017) J Colloid Interface Sci 493:17

    CAS  PubMed  Google Scholar 

  16. Zhou CY, Lai C, Xu P, Zeng GM, Huang DL, Li ZH, Zhang C, Cheng M, Hu L, Wan J, Chen F, Xiong WP, Deng R (2018) ACS Sustain Chem Eng 6:6941

    CAS  Google Scholar 

  17. Xu R, Yang ZH, Wang QP, Bai Y, Liu JB, Zheng Y, Zhang YR, Xiong WP, Ahmad K, Fan CZ (2018) Sci Total Environ 612:788

    CAS  PubMed  Google Scholar 

  18. Yan W, Xiao Y, Yan W, Ding R, Wang S, Zhao F (2019) Chem Eng J 358:1421

    CAS  Google Scholar 

  19. Zhang N, Chen J, Fang Z, Tsang EP (2019) Chem Eng J 369:588

    CAS  Google Scholar 

  20. Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T, Dagot C, Fatta Kassinos D (2013) Water Res 47(3):957

    CAS  PubMed  Google Scholar 

  21. Santos A, Yustos P, Rodriguez S, Simon E, Garcia-Ochoa F (2007) J Hazard Mater 146(3):595

    CAS  PubMed  Google Scholar 

  22. Zhong GH, Liu DX, Zhang JY (2018) J Mater Chem A 6:1887

    CAS  Google Scholar 

  23. Wang Q, Astruc D (2020) Chem Rev 120:1438

    CAS  PubMed  Google Scholar 

  24. Wang C, Tuninetti J, Wang Z, Zhang C, Ciganda R, Salmon L, Moya S, Ruiz J, Astruc D (2017) J Am Chem Soc 139:11610

    CAS  PubMed  Google Scholar 

  25. Fu F, Wang C, Wang Q, Martinez-Villacorta AM, Escobar A, Chong H, Wang X, Moya S, Salmon L, Fouquet E, Ruiz J, Astruc D (2018) J Am Chem Soc 140:10034

    CAS  PubMed  Google Scholar 

  26. Zhao J, Liu X, Wu Y, Li DS, Zhang Q (2019) Coord Chem Rev 391:30

    CAS  Google Scholar 

  27. Amiinu IS, Liu X, Pu Z, Li W, Li Q, Zhang J, Tang H, Zhang H, Mu S (2018) Funct Mater 28:1704638

    Google Scholar 

  28. Yuan S, Pu Z, Zhou H, Yu J, Amiinu IS, Zhu J, Liang Q, Yang J, He D, Hu Z, Tendeloo GV, Mu S (2019) Nano Energy 59:472

    CAS  Google Scholar 

  29. Liang Q, Jin H, Wang Z, Xiong Y, Yuan S, Zeng X, He D, Mu S (2019) Nano Energy 57:746

    CAS  Google Scholar 

  30. Wang H, Yin FX, Chen BH, He XB, Lv PL, Ye CY, Liu DJ (2017) Appl Catal B Environ 205:55

    CAS  Google Scholar 

  31. Liang C, Zhang X, Feng P, Chai H, Huang Y (2018) Chem Eng J 344:95

    CAS  Google Scholar 

  32. Xu J, Xu C, Zhao Y, Wu J, Hu J (2019) Front Chem 7:831

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li N, Chen G, Zhao J, Yan B, Cheng Z, Meng L, Chen V (2019) J Membrane Sci 591:117341

    CAS  Google Scholar 

  34. Yang J, Zhang F, Lu H, Hong X, Jiang H, Wu Y, Li Y (2015) Angew Chem Int Ed 54(37):10889

    CAS  Google Scholar 

  35. Truong T, Hoang TM, Nguyen CK, Huynh QT, Phan NT (2015) Rsc Adv 5(31):24769

    CAS  Google Scholar 

  36. Yang H, He XW, Wang F, Kang Y, Zhang J (2012) J Mater Chem 22(41):21849

    CAS  Google Scholar 

  37. Guan W, Gao X, Ji G, Xing Y, Du C, Liu Z (2017) J Solid State Chem 255:150

    CAS  Google Scholar 

  38. Ma W, Wang N, Fan Y, Tong T, Han X, Du Y (2018) Chem Eng J 336:721

    CAS  Google Scholar 

  39. Liu X, Huang Y, Zhao P, Meng X, Astruc D (2020) ChemCatChem 12:175

    CAS  Google Scholar 

  40. Liu N, Chao F, Huang Y, Wang Y, Meng X, Wang L, Liu X (2019) Tetrahedron Lett 60:151259

    CAS  Google Scholar 

  41. Liu X, Huang Y, Meng X, Li J, Wang D, Chen Y, Tang D, Chen B (2019) Synlett 30:1026

    CAS  Google Scholar 

  42. Liu X, Hamon JR (2019) Coord Chem Rev 389:94

    CAS  Google Scholar 

  43. Tang T, Bi X, Meng X, Chen G, Gou M, Liu X, Zhao P (2020) Tetrahedron Lett 61:151425

    CAS  Google Scholar 

  44. Bi X, Tang T, Meng X, Gou M, Liu X, Zhao P (2020) Catal Sci Technol 10:360

    CAS  Google Scholar 

  45. Huang Y, Wang Y, Meng X, Liu X (2020) Inorg Chem Commun 112:107757

    Google Scholar 

  46. Huang Y, Chen W, Shen J, Wang Y, Liu X (2019) Inorg Chem Commun 110:107588

    CAS  Google Scholar 

  47. Huang Y, Zheng K, Liu X, Meng X, Astruc D (2020) Inorg Chem Front 7:939

    CAS  Google Scholar 

  48. Huang Y, Yan J, Zhang N, Zheng K, Hu Y, Liu X, Meng X (2020) Catal Lett. https://doi.org/10.1007/s10562-020-03123-0

    Article  Google Scholar 

  49. Huang Y, Wu Y, Wang Y, Meng X, Liu X (2020) ChemSelect 5:3272

    CAS  Google Scholar 

  50. Hu H, Guan B, Xia B, Lou XW (2015) J Am Chem Soc 137(16):5590

    CAS  PubMed  Google Scholar 

  51. Jiang Z, Li Z, Qin Z, Sun H, Jiao X, Chen D (2013) Nanoscale 5(23):11770

    CAS  PubMed  Google Scholar 

  52. Ray SK, Dhakal D, Gyawali G, Joshi B, Koirala AR, Lee SW (2019) Chem Eng J 373:259

    Google Scholar 

  53. Cao J, Yang ZH, Xiong WP, Zhou YY, Peng YR, Li X, Zhou CY, Xu R, Zhang YR (2018) Chem Eng J 353:126

    CAS  Google Scholar 

  54. Kang J, Zhou L, Duan X, Sun H, Ao Z, Wang S (2019) Matter 1:1

    Google Scholar 

  55. Zhu S, Li X, Kang J, Duan X, Wang S (2019) Environ Sci Technol 53:307

    CAS  PubMed  Google Scholar 

  56. Peng L, Gong X, Wang X, Yang Z, Liu Y (2018) RSC Adv 8:26377

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 21805166), the 111 Project of China (No. D20015) and Sponsored by Research Fund for Excellent Dissertation of China Three Gorges University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1392 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, W., Huang, Y. & Liu, X. Highly Efficient and Recyclable ZIF-67 Catalyst for the Degradation of Tetracycline. Catal Lett 150, 3017–3022 (2020). https://doi.org/10.1007/s10562-020-03210-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03210-2

Keywords

Navigation