Skip to main content

Advertisement

Log in

Photocatalytic Reduction of CO2 to CO over 3D Bi2MoO6 Microspheres: Simple Synthesis, High Efficiency and Selectivity, Reaction Mechanism

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

It has been a promising approach for directly utilizing solar energy to convert CO2 into clean renewable chemical fuels over photocatalysts with excellent photoreactivity, CO2 adsorption capacity and reasonable redox potentials. In this work, as-synthesized 3D Bi2MoO6 microspheres with cross-stacking nanosheets via a simple hydrothermal method have been investigated for photocatalytic CO2 reduction, and characterized by XRD, UV–Vis DRS, SEM, HRTEM and BET. It was found that as-prepared samples exhibited high Bi2MoO6 purity, large specific surface area, excellent light response and CO2 adsorption capacity, achieving superior photocatalytic CO2 reduction activity and selectivity of CO yield (41.5 μmol g−1 h−1). Moreover, the photocatalytic reaction mechanism for CO2 reduction to CO over 3D Bi2MoO6 microspheres was investigated and proposed. Finally, COOH* was verified to be a key intermediate for photocatalytic CO2 reduction to CO by the analysis of in-situ FTIR. Our findings should provide excellent foundation and guidance for boosting photocatalytic CO2 conversion to CO with enhanced effective and selective ability.

Graphic Abstract

3D Bi2MoO6 microspheres with cross-stacking nanosheets exhibit large specific surface area, excellent light response and CO2 adsorption capacity. COOH*, as a key reaction intermediate, can significantly reduce the activation energy of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ma Y, Wang Z, Xu X, Wang J (2017) Chin J Catal 38:1956–1969

    Article  CAS  Google Scholar 

  2. Lewis NS, Nocera DGP (2006) Proc Natl Acad Sci India 103:15729–15735

    CAS  Google Scholar 

  3. Li K, Peng B, Peng TY (2016) ACS Catal 6:7485–7527

    Article  CAS  Google Scholar 

  4. Ijaz S, Ehsan MF, Ashiq MN, Karamat N, He T (2016) Appl Surf Sci 390:550–559

    Article  CAS  Google Scholar 

  5. Zhao G, Huang X, Wang X, Wang X (2017) J Mater Chem A 5:21625–21649

    Article  CAS  Google Scholar 

  6. Yu B, Zhou Y, Li P, Tu W, Li P, Tang L, Ye J, Zou Z (2016) Nanoscale 8:11870–11874

    Article  CAS  Google Scholar 

  7. Ouyang T, Huang HH, Wang JW, Zhong DC, Lu TB (2017) Angew Chem Int Ed 56:738–743

    Article  CAS  Google Scholar 

  8. Wang P, Yang P, Bai Y, Chen T, Shi X, Ye L, Zhang X (2016) J Taiwan Inst Chem E 68:295–300

    Article  CAS  Google Scholar 

  9. Wu J, Li X, Shi W, Ling P, Sun Y, Jiao X, Gao S, Liang L, Xu J, Yan W, Wang C, Xie Y (2018) Angew Chem Int Ed 57:8719–8723

    Article  CAS  Google Scholar 

  10. Mao J, Peng T, Zhang X, Li K, Zan L (2012) Catal Commun 28:38–41

    Article  CAS  Google Scholar 

  11. Dai W, Yu J, Deng Y, Hu X, Wang T, Luo X (2017) Appl Surf Sci 403:230–239

    Article  CAS  Google Scholar 

  12. Yang H, Bai Y, Chen T, Shi X, Zhu Y-C (2016) Physica E 78:100–104

    Article  CAS  Google Scholar 

  13. Chen Y, Tian G, Shi Y, Xiao Y, Fu H (2015) Appl Catal B 164:40–47

    Article  CAS  Google Scholar 

  14. Jia Y, Lin Y, Ma Y, Shi W (2019) Mater Lett 234:83–86

    Article  CAS  Google Scholar 

  15. Wu M, Wang Y, Xu Y, Ming J, Zhou M, Xu R, Fu Q, Lei Y (2017) ACS Appl Mater Inter 9:23647–23653

    Article  CAS  Google Scholar 

  16. Dai W, Yu J, Xu H, Hu X, Luo X, Yang L, Tu X (2016) CrystEngComm 18:472–3480

    Google Scholar 

  17. Dai W, Hu X, Wang T, Xiong W, Luo X, Zou J (2018) Appl Surf Sci 434:481–491

    Article  CAS  Google Scholar 

  18. Zhang Y, Li L, Han Q, Tang L, Chen X, Hu J, Li Z, Zhou Y, Liu J, Zou Z (2017) ChemPhysChem 18:3240–3244

    Article  CAS  Google Scholar 

  19. Cheng L, Liu L, Wang D, Yang F, Ye J (2019) J CO2 Util 29:196–204

    Article  CAS  Google Scholar 

  20. Yang X, Xiang Y, Wang X, Li S, Chen H, Ding X (2018) Catalysts 8:185

    Article  Google Scholar 

  21. Li J, Yin Y, Liu E, Ma Y, Wan J, Fan J, Hu X (2017) J Hazard Mater 321:183–192

    Article  CAS  Google Scholar 

  22. Xu YS, Zhang WD (2013) Dalton T 42:1094–1101

    Article  CAS  Google Scholar 

  23. Li H, Deng Q, Liu J, Hou W, Du N, Zhang R, Tao X (2014) Catal. Sci Technol 4:1028–1037

    CAS  Google Scholar 

  24. Reñones P, Moya A, Fresno F, Collado L, Vilatela JJ, de la Pena O’Shea VA (2016) J CO2 Util 15:24–31

    Article  Google Scholar 

  25. Stroyuk AL, Ermokhina NI, Korzhak AV, Andryushina NS, Kozytskiy AV, Manorik PA, Ilyin VG, Puziy AM, Sapsai VI, Shcherbatyuk NN (2015) Theor Exp Chem 51:183–190

    Article  CAS  Google Scholar 

  26. Lin X, Liu D, Guo X, Sun N, Zhao S, Chang L, Zhai H, Wang Q (2015) J Phys Chem Solids 76:170–177

    Article  CAS  Google Scholar 

  27. Zhang X, Guo T, Wang X, Wang Y, Fan C, Zhang H (2014) Appl Catal B 150:486–495

    Article  Google Scholar 

  28. Yan T, Sun M, Liu H, Wu T, Liu X, Yan Q, Xu W, Du B (2015) J Alloy Compd 634:223–231

    Article  CAS  Google Scholar 

  29. Benson EE, Kubiak CP, Sathrum AJ (2009) Chem Soc Rev 38:89–99

    Article  CAS  Google Scholar 

  30. Sun Z, Yang Z, Liu H, Wang H, Wu Z (2014) Appl Surf Sci 315:360–367

    Article  CAS  Google Scholar 

  31. Belver C, Adán C, Fernández-García M (2009) Catal Today 143:274–281

    Article  CAS  Google Scholar 

  32. Liu Y, Yang Z-H, Song P-P, Xu R, Wang H (2018) Appl Surf Sci 430:561–570

    Article  CAS  Google Scholar 

  33. Kecskes T (2004) Appl Catal A 268:9–16

    Article  CAS  Google Scholar 

  34. Grabow LC, Mavrikakis M (2011) ACS Catal 1:365–384

    Article  CAS  Google Scholar 

  35. Wang Y, Zhao J, Wang T, Li Y, Li X, Yin J, Wang C (2016) J Catal 337:293–302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 21978196, 21676178, 21706179) and Shanxi Province Science Foundation for Excellent Youths (Grant No. 201801D211008), Scientific and Technological Innovation Project of Higher Education Institutions in Shanxi (Grant No. 201802051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ren, G., Zhang, C. et al. Photocatalytic Reduction of CO2 to CO over 3D Bi2MoO6 Microspheres: Simple Synthesis, High Efficiency and Selectivity, Reaction Mechanism. Catal Lett 150, 2510–2516 (2020). https://doi.org/10.1007/s10562-020-03182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03182-3

Keywords

Navigation