Skip to main content
Log in

Tuning Interfacial Electron Transfer by Anchoring NiFe-LDH on In-situ Grown Cu2O for Enhancing Oxygen Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Interfacial electron transfer within the electrode is crucial for various electrocatalytic reactions. Herein, we demonstrated that in-situ grown Cu2O on Cu foam as a scaffold to load active ingredients could lower the interfacial contact resistance and promote the electron transfer in oxygen evolution reaction. Meanwhile, the Cu2O/Cu (CCF) facilitates to load active components due to higher surface area resulting from its irregular scattered structure. As a demonstration, Ni–Fe doubles layered hydroxide (NiFe-LDH) coated carbon nanotube spheroidal particles (CNS@NiFe) was anchored by a drop-casting route to assemble CNS@NiFe/CCF hybrid electrodes with the CCF as scaffolds. The CNS@NiFe/CCF electrode afforded an ultralow overpotential of 248 mV at 10 mA cm−2 and a small Tafel slope of 32.9 mV dec−1 with an excellent stability.

Graphic Abstract

Schematic illustration of CNS@NiFe/CCF architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Chem Soc Rev 46:337–365

    CAS  PubMed  Google Scholar 

  2. Bo Z, Zheng X, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L, Xu J, Min L, Zheng L (2016) Science 3:352

    Google Scholar 

  3. Li JS, Wang Y, Liu CH, Li SL, Wang YG, Dong LZ, Dai ZH, Li YF, Lan YQ (2016) Nat Commun 7:11204

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu X, Gao S, Yang P, Wang B, Ou JZ, Liu Z, Wang Y (2018) Appl Mater Today 13:158–165

    Google Scholar 

  5. Fabbri E, Habereder A, Waltar K, Kötz R, Schmidt TJ (2014) Catal Sci Technol 4:3800–3821

    CAS  Google Scholar 

  6. Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D, Selve S, Bergmann A, Nong HN, Schlogl R, Mayrhofer KJ, Strasser P (2015) J Am Chem Soc 137:13031–13040

    CAS  PubMed  Google Scholar 

  7. Browne MP, Sofer Z, Pumera M (2019) Energy Environ Sci 12:41–58

    CAS  Google Scholar 

  8. Li S, Wang Y, Peng S, Zhang L, Al-Enizi AM, Zhang H, Sun X, Zheng G (2016) Adv Energy Mater 6:1501661

    Google Scholar 

  9. Hunter BM, Gray HB, Muller AM (2016) Chem Rev 116:14120–14136

    CAS  PubMed  Google Scholar 

  10. Gao R, Yan D (2019) Adv Energy Mater. https://doi.org/10.1002/aenm.201900954

    Article  Google Scholar 

  11. Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao SZ (2018) Chem Rev 2018(118):6337–6408

    Google Scholar 

  12. Li J, Wang N, Tian J, Qian W, Chu W (2018) Adv Funct Mater 28:1806153

    Google Scholar 

  13. Reier T, Oezaslan M, Strasser P (2012) ACS Catal 2:1765–1772

    CAS  Google Scholar 

  14. Nong HN, Oh HS, Reier T, Willinger E, Willinger MG, Petkov V, Teschner D, Strasser P (2015) Angew Chem Int Ed 54:2975–2979

    CAS  Google Scholar 

  15. Tang C, Wang HS, Wang HF, Zhang Q, Tian GL, Nie JQ, Wei F (2015) Adv Mater 27:4516–4522

    CAS  PubMed  Google Scholar 

  16. Yang X, Chen QQ, Wang CJ, Hou CC, Chen Y (2019) J Energy Chem 35:197–203

    Google Scholar 

  17. Zhang W, Li DH, Zhang LZ, She XL, Yang DJ (2019) J Energy Chem 39:39–53

    Google Scholar 

  18. Huang YC, Hu L, Liu R, Hu YW, Xiong TZ, Qiu WT, Balogun M-Sadeeq JT, Pan AL, Tong YX (2019) Appl Catal B 251:181–194

    CAS  Google Scholar 

  19. Hu YW, Huang D, Zhang JN, Huang YC, Balogun M-Sadeeq JT, Tong YX (2019) ChemCatChem 11:6051–6060

    CAS  Google Scholar 

  20. Ye WJ, Wang ZL, Li HB, Yuan YF, Huang YC, Mai WJ (2018) Sci China Mater 61:887–894

    CAS  Google Scholar 

  21. Gao YX, Xiong TZ, Li Y, Huang YC, Li YP, Balogun M-Sadeeq JT (2019) ACS Omega 4:16130–16138

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452–8455

    CAS  PubMed  Google Scholar 

  23. Wang B, Tang C, Wang HF, Chen X, Cao R, Zhang Q (2019) Adv Mater 31:1805658

    Google Scholar 

  24. Roger I, Shipman MA, Symes MD (2017) Nat Rev 1:1–13

    Google Scholar 

  25. Muthukumar P, Kumar VV, Reddy GRK, Kumar PS, Anthony SP (2018) Catal Sci Technol 8:1414–1422

    CAS  Google Scholar 

  26. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Chem Rev 116:3722–3811

    CAS  Google Scholar 

  27. Yan XY, Tong XL, Zhang YF, Han XD, Wang YY, Jin GQ, Qin Y, Guo XY (2012) Chem Commun 48:1892–1894

    CAS  Google Scholar 

  28. Liu Z, Wang L, Yu X, Zhang J, Yang R, Zhang X, Ji Y, Wu M, Deng L, Li L, Wang ZL (2019) Adv Funct Mater 29:1807279

    CAS  Google Scholar 

  29. Song C, Zhao Z, Sun X, Zhou Y, Wang Y, Wang D (2019) Small 15:1804268

    Google Scholar 

  30. Hou CC, Fu WF, Chen Y (2016) Chemsuschem 9:2069–2073

    CAS  PubMed  Google Scholar 

  31. Lu C, Wang J, Czioska S, Dong H, Chen Z (2017) J Phys Chem C 121:25875–25881

    CAS  Google Scholar 

  32. Zhao J, Tran PD, Chen Y, Loo JSC, Barber J, Xu ZJ (2015) ACS Catal 5:4115–4120

    CAS  Google Scholar 

  33. Xu H, Feng JX, Tong YX, Li GR (2016) ACS Catal 7:986–991

    Google Scholar 

  34. Chen H, Gao Y, Sun L (2017) Chemsuschem 10:1475–1481

    CAS  PubMed  Google Scholar 

  35. Ray C, Pal T (2017) J Mater Chem A 5:9465–9487

    CAS  Google Scholar 

  36. Li Q, Wang ZL, Li GR, Guo R, Ding LX, Tong YX (2012) Nano Lett 12:3803–3807

    CAS  PubMed  Google Scholar 

  37. Ye L, Li Z, Zhang X, Lei F, Lin S (2014) J Mater Chem A 2:21010–21019

    CAS  Google Scholar 

  38. Bo X, Satoshi W (2015) ACS Appl Mater Interfaces 7:519–525

    Google Scholar 

  39. Pan L, Zou JJ, Zhang T, Wang S, Li Z, Wang L, Zhang X (2013) J Phys Chem C 118:16335–16343

    Google Scholar 

  40. Gao J, Jiang Q, Liu Y, Liu W, Chu W, Su DS (2018) Nanoscale 10:14207–14219

    CAS  PubMed  Google Scholar 

  41. Xiang Q, Li F, Chen W, Ma Y, Wu Y, Gu X, Qin Y, Tao P, Song C, Shang W, Zhu H, Deng T, Wu J (2018) ACS Energy Lett 3:2357–2365

    CAS  Google Scholar 

  42. Cai Z, Li L, Zhang Y, Yang Z, Yang J, Guo Y, Guo L (2019) Angew Chem Int Ed 131:4233–4238

    Google Scholar 

  43. Niu W, Shi J, Ju L, Li Z, Orlovskaya N, Liu Y, Yang Y (2018) ACS Catal 8:12030–12040

    CAS  Google Scholar 

  44. Wang HF, Tang C, Zhang Q (2015) J Mater Chem A 3:16183–16189

    CAS  Google Scholar 

  45. Chen J, Zheng F, Zhang SJ, Fisher A, Zhou Y, Wang Z, Li Y, Xu BB, Li JT, Sun SG (2018) ACS Catal 8:11342–11351

    CAS  Google Scholar 

  46. Gao SY, Wang B, Liu ZQ (2017) J Colloid Interface Sci 504:652–659

    CAS  PubMed  Google Scholar 

  47. Shi G, Yu C, Fan Z, Li J, Yuan M (2019) ACS Appl Mater Interfaces 11:2662–2669

    CAS  PubMed  Google Scholar 

  48. Umeda M, Dokko K, Fujita Y, Mohamedi M, Uchida I, Selman JR (2003) Electrochim Acta 47:885–890

    Google Scholar 

  49. Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ (2009) Small 5:104–111

    CAS  PubMed  Google Scholar 

  50. Zheng Z, Huang B, Wang Z, Meng G, Ying D (2009) J Phys Chem C 113:462–470

    Google Scholar 

  51. Sungki L, Chen-Wei L, Martin LW (2011) ACS Nano 5:3736–3743

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 21376154 & 21872098). The authors would like to express their heartfelt gratitude to the Analytical and Test Center of Sichuan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chu or Zhongqing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 3682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Li, J., Wang, Y. et al. Tuning Interfacial Electron Transfer by Anchoring NiFe-LDH on In-situ Grown Cu2O for Enhancing Oxygen Evolution. Catal Lett 150, 3049–3057 (2020). https://doi.org/10.1007/s10562-020-03179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03179-y

Keywords

Navigation