Skip to main content
Log in

Uniformly dispersed Pd nanoparticles anchored Co(OH)2/Cu(OH)2 hierarchical nanotube array as high active structured catalyst for Suzuki–Miyaura coupling reactions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Up to now, although tremendous effort has been made in exploring Pd-based catalysts for the Suzuki–Miyaura coupling reactions, there is still much room to enhance its catalytic performance by synthesis catalyst with define-designed and tailored structure. Herein, a new kind of Pd-based structured catalyst with hierarchical hollow structure (Pd/Co(OH)2/Cu(OH)2/copper foam) has been successfully synthesized by three facile steps. As framework, the hierarchical hollow nanoarray structure of Co(OH)2/Cu(OH)2/copper foam is fabricated by immersion and electrolytic deposition methods. Uniformly dispersed Pd nanoparticles with a narrow size distribution (1.5 ± 0.2 nm) are anchored on the surface of the hierarchical nanotube array through an in situ spontaneous redox reaction between Co(OH)2 and PdCl42− without any surfactant at room temperature. Compared with other synthesis approaches, it just takes less than 1 h for the whole fabrication process in our strategy, exhibiting very high efficiency. In order to evaluate the catalytic performance of the as-prepared structured catalyst, 16 kinds of reagents were chosen as substrates for Suzuki–Miyaura coupling reaction, exhibiting excellent activity and reusability under mild conditions. We hope this simple and efficient method will open a new strategy to design and prepare structured catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Corbet JP, Mignani G (2006) Selected patented cross-coupling reaction technologies. Chem Rev 106(7):2651–2710

    Article  CAS  Google Scholar 

  2. Johansson Seechurn CC, Kitching MO, Colacot TJ, Snieckus V (2012) Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 nobel prize. Angew Chem Int Ed 51(21):5062–5085

    Article  CAS  Google Scholar 

  3. Balanta A, Godard C, Claver C (2011) Pd nanoparticles for C–C coupling reactions. Chem Soc Rev 40(10):4973–4985

    Article  CAS  Google Scholar 

  4. Ye R, Zhukhovitskiy AV, Deraedt CV, Toste FD, Somorjai GA (2017) Supported dendrimer-encapsulated metal clusters: toward heterogenizing homogeneous catalysts. Acc Chem Res 50(8):1894–1901

    Article  CAS  Google Scholar 

  5. Yin LX, Liebscher J (2007) Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107(1):133–173

    Article  CAS  Google Scholar 

  6. Molnar A (2011) Efficient, selective, and recyclable palladium catalysts in carbon–carbon coupling reactions. Chem Rev 111(3):2251–2320

    Article  CAS  Google Scholar 

  7. Kong LR, Lu XF, Jin E, Jiang S, Wang C, Zhang WJ (2009) Templated synthesis of polyaniline nanotubes with Pd nanoparticles attached onto their inner walls and its catalytic activity on the reduction of p-nitroanilinum. Compos Sci Technol 69(5):561–566

    Article  CAS  Google Scholar 

  8. Collins G, Schmidt M, O’Dwyer C, McGlacken G, Holmes JD (2014) Enhanced catalytic activity of high-index faceted palladium nanoparticles in Suzuki–Miyaura coupling due to efficient leaching mechanism. ACS Catal 4(9):3105–3111

    Article  CAS  Google Scholar 

  9. Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc 124(26):7642–7643

    Article  CAS  Google Scholar 

  10. Li R, Zhang P, Huang YM, Zhang P, Zhong H, Chen QW (2012) Pd–Fe3O4@C hybrid nanoparticles: preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. J Mater Chem 22(42):22750–22755

    Article  CAS  Google Scholar 

  11. Dadras A, Naimi-Jamal MR, Moghaddam FM, Ayati SE (2018) Suzuki–Miyaura coupling reaction in water in the presence of robust palladium immobilized on modified magnetic Fe3O4 nanoparticles as a recoverable catalyst. Appl Organometal Chem 32(2):e3993. https://doi.org/10.1002/aoc.3993

    Article  CAS  Google Scholar 

  12. Moussa S, Siamaki AR, Gupton BF, El-Shall MS (2011) Pd-partially reduced graphene oxide catalysts (Pd/PRGO): laser synthesis of Pd nanoparticles supported on PRGO nanosheets for carbon–carbon cross coupling reactions. ACS Catal 2(1):145–154

    Article  Google Scholar 

  13. Ohtaka A, Teratani T, Fujii R, Ikeshita K, Shimomura O, Nomura R (2009) Facile preparation of linear polystyrene-stabilized Pd nanoparticles in water. Chem Commun 46:7188–7190

    Article  Google Scholar 

  14. Hariprasad E, Radhakrishnan TP (2012) Palladium nanoparticle-embedded polymer thin film “dip catalyst” for Suzuki–Miyaura reaction. ACS Catal 2(6):1179–1186

    Article  CAS  Google Scholar 

  15. Corma A, Garcia H, Leyva A (2002) Bifunctional palladium-basic zeolites as catalyst for Suzuki reaction. Appl Catal A 236(1):179–185

    Article  CAS  Google Scholar 

  16. Gniewek A, Ziolkowski JJ, Trzeciak AM, Zawadzki M, Grabowska H, Wrzyszcz J (2008) Palladium nanoparticles supported on alumina-based oxides as heterogeneous catalysts of the Suzuki-Miyaura reaction. J Catal 254(1):121–130

    Article  CAS  Google Scholar 

  17. Panahi L, Naimi-Jamal MR, Mokhtari J (2018) Ultrasound-assisted suzuki-miyaura reaction catalyzed by Pd@Cu2(NH2-BDC)2(DABCO). J Organomet Chem 868:36–46

    Article  CAS  Google Scholar 

  18. Tahmasebi S, Mokhtari J, Naimi-Jamal MR, Khosravi A, Panahi L (2017) One-step synthesis of Pd-NPs@Cu2(BDC)2(DABCO) as efficient heterogeneous catalyst for the Suzuki–Miyaura cross-coupling reaction. J Organomet Chem 853:35–41

    Article  CAS  Google Scholar 

  19. Yılmaz NB, Baran T, Menteş A (2018) Production of novel palladium nanocatalyst stabilized with sustainable chitosan/cellulose composite and its catalytic performance in Suzuki–Miyaura coupling reactions. Carbohydr Polym 181:596–604

    Article  Google Scholar 

  20. Baran T, Inanan T, Menteş A (2016) Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new Chitosan supported Pd catalyst. Carbohydr Polym 145:20–29

    Article  CAS  Google Scholar 

  21. Baran T, Sargin I, Kaya M, Menteş A (2016) Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls. Carbohydr Polym 152:181–188

    Article  CAS  Google Scholar 

  22. Baran T, Baran NY, Menteş A (2018) Sustainable chitosan/starch composite material for stabilization of palladium nanoparticles: synthesis, characterization and investigation of catalytic behaviour of Pd@chitosan/starch nanocomposite in Suzuki–Miyaura reaction. Appl Organometal Chem 32(2):e4075. https://doi.org/10.1002/aoc.4075

    Article  Google Scholar 

  23. Baran T, Baran NY, Menteş A (2017) A new air and moisture stable robust bio-polymer based palladium catalyst for highly efficient synthesis of biaryl compounds. Appl Organomet Chem 32(2):e4076. https://doi.org/10.1002/aoc.4076

    Article  CAS  Google Scholar 

  24. Baran T (2017) Practical, economical, and eco-friendly starch-supported palladium catalyst for Suzuki coupling reactions. J Colloid Interface Sci 496:446–455

    Article  CAS  Google Scholar 

  25. Baran NY, Baran T, Menteş A (2016) Fabrication and application of cellulose Schiff base supported Pd(II) for fast and simple synthesis of biaryls via Suzuki coupling reaction. Appl Catal A 531:36–44

    Article  Google Scholar 

  26. Baran T, Baran NY, Menteş A (2018) Preparation, structural characterization, and catalytic performance of Pd(II) and Pt(II) complexes derived from cellulose schiff base. J Mol Struct 1160:154–160

    Article  CAS  Google Scholar 

  27. Baran T (2018) Ultrasound-accelerated synthesis of biphenyl compounds using novel Pd(0) nanoparticles immobilized on bio-composite. Ultrason Sonochem 45:231–237

    Article  CAS  Google Scholar 

  28. Baran T (2018) Pd(0) nanocatalyst stabilized on a novel agar/pectin composite and its catalytic activity in the synthesis of biphenyl compounds by suzuki-miyaura cross coupling reaction and reduction of o-nitroaniline. Carbohydr Polym 195:45–52

    Article  CAS  Google Scholar 

  29. Baran T, Baran NY, Menteş A (2018) An easily recoverable and highly reproducible agar-supported palladium catalyst for Suzuki–Miyaura coupling reactions and reduction of o -nitroaniline. Int J Biol Macromol 115:249–256

    Article  CAS  Google Scholar 

  30. Duan LL, Fu R, Xiao ZG, Zhao QF, Wang JQ, Chen SJ, Wan Y (2015) Activation of aryl chlorides in water under phase-transfer agent-free and ligand-free Suzuki coupling by heterogeneous palladium supported on hybrid mesoporous carbon. ACS Catal 5(2):575–586

    Article  CAS  Google Scholar 

  31. Liu HY, Zhang LY, Wang N, Su DS (2014) Palladium nanoparticles embedded in the inner surfaces of carbon nanotubes: synthesis, catalytic activity, and sinter resistance. Angew Chem Int Ed 53(46):12634–12638

    CAS  Google Scholar 

  32. Yamada YM, Yuyama Y, Sato T, Fujikawa S, Uozumi Y (2014) A palladium-nanoparticle and silicon-nanowire-array hybrid: a platform for catalytic heterogeneous reactions. Angew Chem Int Ed 53(1):127–131

    Article  CAS  Google Scholar 

  33. Feng JX, Xu H, Dong YT, Ye SH, Tong YX, Li GR (2016) FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew Chem Int Ed 128:3758–3762

    Article  Google Scholar 

  34. Xie LS, Tang C, Wang KY, Du G, Asiri AM, Sun XP (2017) Cu(OH)2@CoCO3(OH)2·nH2O Core-Shell heterostructure nanowire array: an efficient 3D anodic catalyst for oxygen evolution and methanol electrooxidation. Small 13(7):1602755. https://doi.org/10.1002/smll.201602755

    Article  CAS  Google Scholar 

  35. Cao XH, Yin ZY, Zhang H (2014) Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ Sci 7(6):1850–1865

    Article  CAS  Google Scholar 

  36. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8(3):702–730

    Article  CAS  Google Scholar 

  37. Wang JX, Zhang QB, Li XH, Zhang B, Mai LQ, Zhang KL (2015) Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 12:437–446

    Article  CAS  Google Scholar 

  38. Xu YK, Xuan HC, Gao JH, Liang T, Han XK, Yang J, Zhang YQ, Li H, Han PD, Du YW (2018) Hierarchical three-dimensional NiMoO4-anchored rGO/Ni foam as advanced electrode material with improved supercapacitor performance. J Mater Sci 53(11):8483–8498. https://doi.org/10.1007/s10853-018-2171-1

    Article  CAS  Google Scholar 

  39. Zhang DB, Shao Y, Kong XG, Jiang MH, Lei DQ, Lei XD (2016) Facile fabrication of large-area hybrid Ni-Co hydroxide/Cu(OH)2/copper foam composites. Electrochim Acta 218:294–302

    Article  CAS  Google Scholar 

  40. Yu L, Zhou HQ, Sun JY, Qin F, Yu F, Bao JM, Yu Y, Chen S, Ren ZF (2017) Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ Sci 10(8):1820–1827

    Article  CAS  Google Scholar 

  41. Sun JQ, Li YP, Liu XJ, Yang Q, Liu JF, Sun XM, Evans DG, Duan X (2012) Hierarchical cobalt iron oxide nanoarrays as structured catalysts. Chem Commun 48(28):3379–3381

    Article  CAS  Google Scholar 

  42. Hu QY, Liu XW, Tang LT, Min DW, Shi TC, Zhang W (2017) Pd–ZnO nanowire arrays as recyclable catalysts for 4-nitrophenol reduction and Suzuki coupling reactions. RSC Adv 7(13):7964–7972

    Article  CAS  Google Scholar 

  43. Fu QR, Meng Y, Fang ZL, Hu QQ, Xu L, Gao WH, Huang XC, Xue Q, Sun YP, Lu FS (2017) Boron nitride nanosheet-anchored Pd-Fe core-shell nanoparticles as highly efficient catalysts for Suzuki–Miyaura coupling reactions. ACS Appl Mater Interfaces 9(3):2469–2476

    Article  CAS  Google Scholar 

  44. Zhao JW, Shao MF, Yan DP, Zhang ST, Lu ZZ, Li ZX, Cao XZ, Wang BY, Wei M, Evans DG (2013) A hierarchical heterostructure based on Pd nanoparticles/layered double hydroxide nanowalls for enhanced ethanol electrooxidation. J Mater Chem A 1(19):5840–5846

    Article  CAS  Google Scholar 

  45. Hou CC, Wang CJ, Chen QQ, Lv XJ, Fu WF, Chen Y (2016) Rapid synthesis of ultralong Fe(OH)3: Cu(OH)2 core-shell nanowires self-supported on copper foam as a highly efficient 3D electrode for water oxidation. Chem Commun 52:14470–14473

    Article  CAS  Google Scholar 

  46. Feng JX, Ding LX, Ye SH, He XJ, Xu H, Tong YX, Li GR (2015) Co(OH)2 @PANI hybrid nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv Mater 27(44):7051–7057

    Article  CAS  Google Scholar 

  47. Ma RZ, Liang JB, Takada K, Sasaki T (2011) Topochemical synthesis of Co-Fe layered double hydroxides at varied Fe/Co ratios: unique intercalation of triiodide and its profound effect. J Am Chem Soc 133(3):613–620

    Article  CAS  Google Scholar 

  48. Shi WW, Chen XQ, Xu SY, Cui JB, Wang LY (2016) Highly efficient PdCu3 nanocatalysts for Suzuki–Miyaura reaction. Nano Res 9(10):2912–2920

    Article  CAS  Google Scholar 

  49. Nie RF, Shi JJ, Du WC, Hou ZY (2014) Ni2O3-around-Pd hybrid on graphene oxide: an efficient catalyst for ligand-free Suzuki–Miyaura coupling reaction. Appl Catal A 473(5):1–6

    Article  CAS  Google Scholar 

  50. Xia JW, Fu YS, He GY, Sun XQ, Wang X (2017) Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki–Miyaura coupling reactions. Appl Catal B 200:39–46

    Article  CAS  Google Scholar 

  51. Amali AJ, Rana RK (2009) Stabilisation of Pd (0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki–Miyaura reactions. Green Chem 11:1781–1786

    Article  CAS  Google Scholar 

  52. Yu DD, Bai J, Wang JZ, Liang HO, Li CP (2016) Assembling formation of highly dispersed Pd nanoparticles supported 1D carbon fiber electrospun with excellent catalytic active and recyclable performance for Suzuki reaction. Appl Surf Sci 399:185–191

    Article  Google Scholar 

  53. Ni XJ, Wu ZF, Gu XD, Wang DW, Yang C, Sun PD, Li YX (2017) In situ growth of clean Pd nanoparticles on polystyrene microspheres assisted by functional reduced graphene oxide and their excellent catalytic properties. Langmuir 33(33):8157–8164

    Article  CAS  Google Scholar 

  54. Hong MC, Choi MC, Chang YW, Lee Y, Kim J, Rhee H (2012) Palladium nanoparticles on thermoresponsive hydrogels and their application as recyclable Suzuki–Miyaura coupling reaction catalysts in water. Adv Synth Catal 354:1257–1263

    Article  CAS  Google Scholar 

  55. Labulo AH, Martincigh BS, Omondi B, Nyamori VO (2017) Advances in carbon nanotubes as efficacious supports for palladium-catalysed carbon–carbon cross-coupling reactions. J Mater Sci 52(16):9225–9248. https://doi.org/10.1007/s10853-017-1128-0

    Article  CAS  Google Scholar 

  56. Baran T, Açıksöz E, Menteş A (2015) Carboxymethyl chitosan schiff base supported heterogeneous palladium(II) catalysts for suzuki cross-coupling reaction. J Mol Catal A-Chem 407:47–52

    Article  CAS  Google Scholar 

  57. Wang Y, Dou L, Zhang H (2017) Nanosheet array-like palladium-catalysts pdx/rgo@coal-ldh via lattice atomic-confined in situ reduction for highly efficient heck coupling reaction. ACS Appl Mater Interfaces 9(44):38784–38795

    Article  CAS  Google Scholar 

  58. Choudary BM, Madhi S, Chowdari NS, Kantam ML, Sreedhar B (2002) Layered double hydroxide supported nanopalladium catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-type coupling reactions of chloroarenes. J Am Chem Soc 124(47):14127–14136

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 973 Program (No. 2014CB932104), the National Natural Science Foundation of China (Nos: 2177060378, U1707603 and 21521005) and the Program for Changjiang Scholars, Innovative Research Teams in Universities (No. IRT1205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianggui Kong or Xiaodong Lei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Kong, X., Jiang, M. et al. Uniformly dispersed Pd nanoparticles anchored Co(OH)2/Cu(OH)2 hierarchical nanotube array as high active structured catalyst for Suzuki–Miyaura coupling reactions. J Mater Sci 53, 16263–16275 (2018). https://doi.org/10.1007/s10853-018-2781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2781-7

Keywords

Navigation