Skip to main content
Log in

A Route to Develop the Synergy Between CeO2 and CuO for Low Temperature CO Oxidation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Highly active nano-composite oxide of cerium-copper was synthesized via physical grinding of respective metal oxides using mortar and pestle for the oxidation of carbon monoxide. The prepared oxides were characterized using X-ray diffraction (XRD), Thermal-gravimetric studies (TG), Infrared spectroscopy (IR), Scanning electron microscopy (SEM) and BET surface area. In addition, CO adsorption and surface reduction–oxidation property was studied through CO pulse titration, H2-TPR and O2-TPO to understand their surface sensitivity towards it. Among the tested catalysts, synergy interaction produced between cerium and copper oxides after grinding them using mortar and pestle leads to an excellent CO to CO2 conversion. High CO chemisorption and an enhanced redox property are the evidence for the synergy exhibited by CeO2–CuO composite catalyst. The grinding route helped in improving the CO oxidation by decreasing the active temperature region for the reaction showed a good correlation with high CO adsorption and increased oxygen mobility at lower temperature gradient over CeO2–CuO composite. Further, good reaction stability was also seen with the addition of moisture in the reaction mixture.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang X, Hou F, Yang Y et al (2017) A facile synthesis for cauliflower like CeO2 catalysts from Ce-BTC precursor and their catalytic performance for CO oxidation. Appl Surf Sci 423:771–779. https://doi.org/10.1016/j.apsusc.2017.06.235

    Article  CAS  Google Scholar 

  2. Zhang X, Hou F, Li H et al (2018) A strawsheave-like metal organic framework Ce-BTC derivative containing high specific surface area for improving the catalytic activity of CO oxidation reaction. Microporous Mesoporous Mater 259:211–219. https://doi.org/10.1016/j.micromeso.2017.10.019

    Article  CAS  Google Scholar 

  3. Venkataswamy P, Damma D, Jampaiah D et al (2019) Cr-doped CeO2 nanorods for CO oxidation: insights into promotional effect of Cr on structure and catalytic performance. Catal Letters. https://doi.org/10.1007/s10562-019-03014-z

    Article  Google Scholar 

  4. Zhang X, Li H, Hou F et al (2017) Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100. Appl Surf Sci 411:27–33. https://doi.org/10.1016/j.apsusc.2017.03.179

    Article  CAS  Google Scholar 

  5. Zhang X, Li H, Lv X et al (2018) Facile synthesis of highly efficient amorphous mn-mil-100 catalysts: formation mechanism and structure changes during application in CO oxidation. Chem - A Eur J 24:8822–8832. https://doi.org/10.1002/chem.201800773

    Article  CAS  Google Scholar 

  6. Yang Y, Dong H, Wang Y et al (2018) Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. J Solid State Chem 258:582–587. https://doi.org/10.1016/j.jssc.2017.11.033

    Article  CAS  Google Scholar 

  7. Zhang X, Yang Y, Song L et al (2018) High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol Catal 447:80–89. https://doi.org/10.1016/j.mcat.2018.01.007

    Article  CAS  Google Scholar 

  8. Kerkar RD, Salker AV (2020) Nitric oxide reduction by carbon monoxide and carbon monoxide oxidation by O2 over Co–Mn composite oxide material. Appl Nanosci 10:141–149. https://doi.org/10.1007/s13204-019-01109-y

    Article  CAS  Google Scholar 

  9. Yang Y, Hou F, Li H et al (2017) Facile synthesis of Ag/KIT-6 catalyst via a simple one pot method and application in the CO oxidation. J Porous Mater 24:1661–1665. https://doi.org/10.1007/s10934-017-0406-1

    Article  CAS  Google Scholar 

  10. Zhang X, Dong H, Wang Y et al (2016) Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation. Chem Eng J 283:1097–1107. https://doi.org/10.1016/j.cej.2015.08.064

    Article  CAS  Google Scholar 

  11. Song KS, Kang SK, Kim SD (1997) Preparation and characterization of Ag/MnOx/perovskite catalysts for CO oxidation. Catal Letters 49:65–68. https://doi.org/10.1023/A:1019072314394

    Article  CAS  Google Scholar 

  12. Kunkalekar RK, Salker AV (2010) Low temperature carbon monoxide oxidation over nanosized silver doped manganese dioxide catalysts. Catal Commun 12:193–196. https://doi.org/10.1016/j.catcom.2010.09.013

    Article  CAS  Google Scholar 

  13. Zhou Y, Wang Z, Liu C (2015) Perspective on CO oxidation over Pd-based catalysts. Catal Sci Technol 5:69–81. https://doi.org/10.1039/c4cy00983e

    Article  CAS  Google Scholar 

  14. Moreno M, Bergamini L, Baronetti GT et al (2010) Mechanism of CO oxidation over CuO/CeO2 catalysts. Int J Hydrogen Energy 35:5918–5924. https://doi.org/10.1016/j.ijhydene.2009.12.107

    Article  CAS  Google Scholar 

  15. Sedmak G, Hočevar S, Levec J (2003) Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2-y catalyst. J Catal 213:135–150. https://doi.org/10.1016/S0021-9517(02)00019-2

    Article  CAS  Google Scholar 

  16. Su Y, Dai L, Zhang Q et al (2016) Fabrication of Cu-doped CeO2 catalysts with different dimension pore structures for CO catalytic oxidation. Catal Surv from Asia 20:231–240. https://doi.org/10.1007/s10563-016-9220-z

    Article  CAS  Google Scholar 

  17. Avgouropoulos G, Ioannides T, Matralis H (2005) Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO. Appl Catal B Environ 56:87–93. https://doi.org/10.1016/j.apcatb.2004.07.017

    Article  CAS  Google Scholar 

  18. Zeng S, Zhang W, Liu N, Su H (2013) Inverse CeO2/CuO catalysts prepared by hydrothermal method for preferential CO oxidation. Catal Letters 143:1018–1024. https://doi.org/10.1007/s10562-013-1065-8

    Article  CAS  Google Scholar 

  19. Elias JS, Stoerzinger KA, Hong WT et al (2017) In situ spectroscopy and mechanistic insights into CO oxidation on transition-metal-substituted ceria nanoparticles. ACS Catal 7:6843–6857. https://doi.org/10.1021/acscatal.7b01600

    Article  CAS  Google Scholar 

  20. Xi X, Ma S, Chen JF, Zhang Y (2014) Promotional effects of Ce, Mn and Fe oxides on CuO/SiO2 catalysts for CO oxidation. J Environ Chem Eng 2:1011–1017. https://doi.org/10.1016/j.jece.2014.03.021

    Article  CAS  Google Scholar 

  21. Guo X, Zhou R (2016) A new insight into the morphology effect of ceria on CuO/CeO2 catalysts for CO selective oxidation in hydrogen-rich gas. Catal Sci Technol 6:3862–3871. https://doi.org/10.1039/c5cy01816a

    Article  CAS  Google Scholar 

  22. Zheng X, Zhang X, Wang X et al (2005) Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation. Appl Catal A Gen 295:142–149. https://doi.org/10.1016/j.apcata.2005.07.048

    Article  CAS  Google Scholar 

  23. Yu X, Wu J, Zhang A et al (2019) Hollow copper-ceria microspheres with single and multiple shells for preferential CO oxidation. CrystEngComm 21:3619–3626. https://doi.org/10.1039/c9ce00272c

    Article  CAS  Google Scholar 

  24. Avgouropoulos G, Ioannides T, Matralis HK et al (2001) CuO-CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catal Lett 73:33–40. https://doi.org/10.1023/A:1009013029842

    Article  CAS  Google Scholar 

  25. Zheng X, Wang X, Zhang X et al (2006) Catalytic carbon monoxide oxidation over CuO/CeO2 composite catalysts. React Kinet Catal Lett 88:57–63. https://doi.org/10.1556/RKCL.88.2006.1.8

    Article  CAS  Google Scholar 

  26. Zhang D, Qian Y, Shi L et al (2012) Cu-doped CeO2 spheres: synthesis, characterization, and catalytic activity. Catal Commun 26:164–168. https://doi.org/10.1016/j.catcom.2012.05.001

    Article  CAS  Google Scholar 

  27. Nagase K, Zheng Y, Kodama Y, Kakuta J (1999) Dynamic study of the oxidation state of copper in the course of carbon monoxide oxidation over powdered CuO and Cu2O. J Catal 187:123–130. https://doi.org/10.1006/jcat.1999.2611

    Article  CAS  Google Scholar 

  28. Palussiere S, Cure J, Nicollet A et al (2019) The role of alkylamine in the stabilization of CuO nanoparticles as a determinant of the Al/CuO redox reaction. Phys Chem Chem Phys 21:16180–16189. https://doi.org/10.1039/c9cp02220a

    Article  CAS  PubMed  Google Scholar 

  29. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  30. Wang Z, Sun Q, Wang D et al (2019) Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen. Sep Purif Technol 209:1016–1026. https://doi.org/10.1016/j.seppur.2018.09.045

    Article  CAS  Google Scholar 

  31. Yu J, Yu J, Wei Z et al (2019) Preparation and characterization of UiO-66-supported Cu–Ce bimetal catalysts for low-temperature CO oxidation. Catal Lett 149:496–506. https://doi.org/10.1007/s10562-018-2639-2

    Article  CAS  Google Scholar 

  32. Ning P, Song Z, Li H et al (2015) Selective catalytic reduction of NO with NH3 over CeO2-ZrO2-WO3 catalysts prepared by different methods. Appl Surf Sci 332:130–137. https://doi.org/10.1016/j.apsusc.2015.01.118

    Article  CAS  Google Scholar 

  33. López-Suárez FE, Bueno-López A, Illán-Gómez MJ et al (2008) Copper catalysts for soot oxidation: alumina versus perovskite supports. Environ Sci Technol 42:7670–7675. https://doi.org/10.1021/es8009293

    Article  CAS  PubMed  Google Scholar 

  34. Mao L, Zhao X, Xiao Y, Dong G (2019) The effect of the structure and oxygen defects on the simultaneous removal of NO x and soot by La2−xBaxCuO4. New J Chem 43:4196–4204. https://doi.org/10.1039/c8nj04233k

    Article  CAS  Google Scholar 

  35. Yang Y, Dong H, Wang Y et al (2017) A facile synthesis for porous CuO/Cu2O composites derived from MOFs and their superior catalytic performance for CO oxidation. Inorg Chem Commun 86:74–77. https://doi.org/10.1016/j.inoche.2017.09.027

    Article  CAS  Google Scholar 

  36. Zhou M, Wang Z, Sun Q et al (2019) High-performance Ag–Cu nanoalloy catalyst for the selective catalytic oxidation of ammonia. ACS Appl Mater Interfaces 11:46875–46885. https://doi.org/10.1021/acsami.9b16349

    Article  CAS  PubMed  Google Scholar 

  37. Cwele T, Mahadevaiah N, Singh S et al (2016) CO oxidation activity enhancement of Ce0.95Cu0.05O2-δ induced by Pd co-substitution. Catal Sci Technol 6:8104–8116. https://doi.org/10.1039/c6cy00981f

    Article  CAS  Google Scholar 

  38. Biesinger MC, Lau LWM, Gerson AR et al (2010) Applied surface science resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides : Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898. https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  CAS  Google Scholar 

  39. Tsoncheva T, Ivanov K, Dimitrov D (2011) Copper and chromium oxide nanocomposite catalysts for simultaneous elimination of CO and oxygenate VOCs in toxic gas emissions. Can J Chem 89:583–589. https://doi.org/10.1139/v11-037

    Article  CAS  Google Scholar 

  40. Wang Y, Yang Y, Liu N et al (2018) Sword-like CuO/CeO2 composites derived from a Ce-BTC metal-organic framework with superior CO oxidation performance. RSC Adv 8:33096–33102. https://doi.org/10.1039/c8ra07531j

    Article  CAS  Google Scholar 

  41. Cecilia JA, Arango-Díaz A, Rico-Pérez V et al (2015) The influence of promoters (Zr, La, Tb, Pr) on the catalytic performance of CuO-CeO2 systems for the preferential oxidation of CO in the presence of CO2 and H2O. Catal Today 253:115–125. https://doi.org/10.1016/j.cattod.2015.02.012

    Article  CAS  Google Scholar 

  42. Ma J, Jin G, Gao J et al (2015) Catalytic effect of two-phase inter growth and coexistence CuO-CeO2. J Mater Chem A 3:24358–24370. https://doi.org/10.1039/c5ta06435j

    Article  CAS  Google Scholar 

  43. Kinetics R (2013) Low temperature CO oxidation over nano- sized Cu–Pd doped MnO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis 108:173–182. https://doi.org/10.1007/s11144-012-0492-7

    Article  CAS  Google Scholar 

  44. Huang X, Ma Z, Lin W et al (2017) Activation of fast selective catalytic reduction of NO by NH3 at low temperature over TiO2 modified CuOX-CeOXcomposites. Catal Commun 91:53–56. https://doi.org/10.1016/j.catcom.2016.11.028

    Article  CAS  Google Scholar 

  45. Zhang Y, Zhao Y, Zhang H et al (2016) Investigation of oxygen vacancies on Pt- or Au-modified CeO2 materials for CO oxidation. RSC Adv 6:70653–70659. https://doi.org/10.1039/c6ra12049k

    Article  CAS  Google Scholar 

  46. Mock SA, Zell ET, Hossain ST, Wang R (2018) Effect of reduction treatment on CO oxidation with CeO2 nanorod-supported CuOx catalysts. ChemCatChem 10:311–319. https://doi.org/10.1002/cctc.201700972

    Article  CAS  Google Scholar 

  47. MacIel CG, Silva TDF, Hirooka MI et al (2012) Effect of nature of ceria support in CuO/CeO2 catalyst for PROX-CO reaction. Fuel 97:245–252. https://doi.org/10.1016/j.fuel.2012.02.004

    Article  CAS  Google Scholar 

  48. Walker P, Tarn WH (1990) CRC Handbook of metal etchants. CRC Press, Florida

    Google Scholar 

  49. Wang L, Yin G, Yang Y, Zhang X (2019) Enhanced CO oxidation and toluene oxidation on CuCeZr catalysts derived from UiO-66 metal organic frameworks. React Kinet Mech Catal 128:193–204. https://doi.org/10.1007/s11144-019-01623-8

    Article  CAS  Google Scholar 

  50. Zhang X, Zhang X, Song L et al (2018) Enhanced catalytic performance for CO oxidation and preferential CO oxidation over CuO/CeO2 catalysts synthesized from metal organic framework: Effects of preparation methods. Int J Hydrogen Energy 43:18279–18288. https://doi.org/10.1016/j.ijhydene.2018.08.060

    Article  CAS  Google Scholar 

  51. An K, Alayoglu S, Musselwhite N et al (2013) Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. J Am Chem Soc 135:16689–16696. https://doi.org/10.1021/ja4088743

    Article  CAS  PubMed  Google Scholar 

  52. Aguila G, Guerrero S, Baeza P, Araya P (2019) Study of the influence of the Cu/Ce loading ratio in the formation of highly active species on ZrO2 supported copper-ceria catalysts. Mater Chem Phys 223:666–675. https://doi.org/10.1016/j.matchemphys.2018.11.072

    Article  CAS  Google Scholar 

  53. Reis CGM, Almeida KA, Silva TF, Assaf JM (2018) CO preferential oxidation reaction aspects in a nanocrystalline CuO/CeO2 catalyst. Catal Today. https://doi.org/10.1016/j.cattod.2018.10.037

    Article  Google Scholar 

Download references

Acknowledgements

Authors sincerely thank UGC‐New Delhi for the financial assistance under RGNF Fellowship (F1‐17.1/2014‐15/RGNF‐2014‐15‐ST‐ GOA‐85914).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Salker.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 661 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerkar, R.D., Salker, A.V. A Route to Develop the Synergy Between CeO2 and CuO for Low Temperature CO Oxidation. Catal Lett 150, 2774–2783 (2020). https://doi.org/10.1007/s10562-020-03166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03166-3

Keywords

Navigation