Skip to main content

Advertisement

Log in

A Schiff Base Modified Pd Catalyst for Selective Hydrogenation of 2-Butyne-1,4-diol to 2-Butene-1,4-diol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Schiff-base modified Pd nanoparticles (NPs) supported on silica with an average size of ca. 2 nm have been synthesized via a one-pot aldimine condensation followed by impregnation-reduction of a palladium precursor, and the sample exhibits an excellent catalytic activity and selectivity in hydrogenation of 2-butyne-1,4-diol (BYD) to 2-butene-1,4-diol (BED). Under the mild reaction conditions (50 °C, 2 MPa H2, and 4 h) and additive-free, 95.2% BYD conversion has been achieved with ca. 100% BED selectivity over the Pd/SiO2–Schiff catalyst, and the Pd/SiO2–Schiff catalyst presents an excellent catalytic stability. The above results are much better than that of commercial Lindlar catalyst, and the improved catalytic performance is attributed to the strong metal–support interaction derived from the coordination of nitrogen sites (Schiff-base) to Pd NPs, based on catalyst characterization results.

Graphic Abstract

Featured by additive-free and high selectivity, hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol over the Pd/SiO2–Schiff catalyst has been developed, aiming for green production of fine chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rode CV (2008) Catalytic hydrogenation of 2-butyne-1,4-diol: activity, selectivity and kinetics studies. J Jpn Pet Inst 51:119–133

    Article  CAS  Google Scholar 

  2. Musolino MG, Cutrupi CM, Donato A, Pietropaolo D, Pietropaolo R (2003) Liquid phase hydrogenation of 2-butyne-1,4-diol and 2-butene-1,4-diol isomers over Pd catalysts: roles of solvent, support and proton on activity and products distribution. J Mol Catal A 195:147–157

    Article  CAS  Google Scholar 

  3. Semagina N, Joannet E, Parra S, Sulman E, Renken A, Kiwi ML (2005) Palladium nanoparticles stabilized in block-copolymer micelles for highly selective 2-butyne-1,4-diol partial hydrogenation. Appl Catal A 280:141–147

    Article  CAS  Google Scholar 

  4. Wang C, Gong S, Liang Z, Sun Y, Cheng R, Yang B, Liu Y, Yang J, Sun F (2019) Ligand-promoted iridium-catalyzed transfer hydrogenation of terminal alkynes with ethanol and its application. ACS Omega 4:16045–16051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Calcio Gaudino E, Manzoli M, Carnaroglio D, Wu Z, Grillo G, Rotolo L, Medlock J, Bonrath W, Cravotto G (2018) Sonochemical preparation of alumina-spheres loaded with Pd nanoparticles for 2-butyne-1,4-diol semi-hydrogenation in a continuous flow microwave reactor. RSC Adv 8:7029–7039

    Article  CAS  Google Scholar 

  6. Ali SH, Goodwin JD (1998) SSITKA investigation of palladium precursor and support effects on CO hydrogenation over supported Pd catalysts. J Catal 176:3–13

    Article  CAS  Google Scholar 

  7. Tanielyan SK, More SR, Augustine RL, Schmidt SR (2017) Continuous liquid-phase hydrogenation of 1,4-butynediol to high-purity 1,4-butanediol over particulate Raney nickel catalyst in a fixed bed reactor. Org Process Res Dev 21:327–335

    Article  CAS  Google Scholar 

  8. Joannet E, Horny C, Kiwi ML, Renken A (2002) Palladium supported on ÿlamentous active carbon as effective catalyst for liquid-phase hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol. Chem Eng Sci 57:3453–3460

    Article  CAS  Google Scholar 

  9. Ulan JG, Kuo E, Maier WF, Rai RS, Thomas G (1987) Effect of lead acetate in the preparation of the Lindlar catalyst. J Org Chem 52:3126–3132

    Article  CAS  Google Scholar 

  10. Cherkasov N, Ibhadon AO, McCue AJ, Anderson JA, Johnston SK (2015) Palladium–bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Appl Catal A 497:22–30

    Article  CAS  Google Scholar 

  11. Chen X, Zhang M, Yang K, Williams CT, Liang C (2014) Raney Ni–Si catalysts for selective hydrogenation of highly concentrated 2-butyne-1,4-diol to 2-butene-1,4-diol. Catal Lett 144:1118–1126

    Article  CAS  Google Scholar 

  12. Fukuda T, Kusama T (1958) Partial hydrogenation of 1, 4-butynediol. Bull Chem Soc Jpn 31:339–342

    Article  CAS  Google Scholar 

  13. Li C, Zhang M, Di X, Yin D, Li W, Liang C (2016) One-step synthesis of Pt@ZIF-8 catalyst for the selective hydrogenation of 1,4-butynediol to 1,4-butenediol. Chin J Catal 37:1555–1561

    Article  CAS  Google Scholar 

  14. Francová D, Tanchoux N, Gérardin C, Trens P, Prinetto F, Ghiotti G, Tichit D, Coq B (2007) Hydrogenation of 2-butyne-1,4-diol on supported Pd catalysts obtained from LDH precursors. Microporous Mesoporous Mater 99:118–125

    Article  Google Scholar 

  15. Kumar S, Dhar DN, Saxena PN (2009) Applications of metal complexes of Schiff bases—a review. J Sci Ind Res 68:181–187

    CAS  Google Scholar 

  16. Liu Q, Yang X, Huang Y, Xu S, Su X, Pan X, Xu J, Wang A, Liang C, Wang X, Zhang T (2015) A Schiff base modified gold catalyst for green and efficient H2 production from formic acid. Energy Environ Sci 8:3204–3207

    Article  CAS  Google Scholar 

  17. González AC, Corma A, Iglesias M, Sánchez F (2008) Soluble gold and palladium complexes heterogenized on MCM-41 are effective and versatile catalysts. Eur J Inorg Chem 2008:1107–1115

    Article  Google Scholar 

  18. Gonzalez AC, Corma A, Iglesias M, Sanchez F (2004) Pd(II)-Schiff base complexes heterogenised on MCM-41 and delaminated zeolites as efficient and recyclable catalysts for the Heck reaction. Adv Synth Catal 346:1758–1764

    Article  Google Scholar 

  19. Wang X, Liu Q, Xiao Z, Chen X, Shi C, Tao S, Huang Y, Liang C (2014) In situ synthesis of Au–Pd bimetallic nanoparticles on amine-functionalized SiO2 for the aqueous-phase hydrodechlorination of chlorobenzene. RSC Adv 4:48254–48259

    Article  CAS  Google Scholar 

  20. Guo Y, Yang J, Zhuang J, Sun H, Zhang H, Yue Y, Zhu H, Bao X, Yuan P (2020) Selectively catalytic hydrogenation of styrene-butadiene rubber over Pd/g-C3N4 catalyst. Appl Catal A 589:117312–117319

    Article  CAS  Google Scholar 

  21. Kaur P, Singh R, Kaur V, Talwar D (2018) Reusable Schiff base functionalized silica as a multi-purpose nanoprobe for fluorogenic recognition, quantification and extraction of Zn2+ ions. Sens Actuators B 254:533–541

    Article  CAS  Google Scholar 

  22. Niakan M, Asadi Z, Masteri FM (2018) A covalently anchored Pd(II)-Schiff base complex over a modified surface of mesoporous silica SBA-16: an efficient and reusable catalyst for the Heck-Mizoroki coupling reaction in water. Colloids Surf A 551:117–127

    Article  CAS  Google Scholar 

  23. Lu L, Li H, Hong Y, Luo Y, Tang Y, Lu T (2012) Improvement of electrocatalytic performance of carbon supported Pd anodic catalyst in direct formic acid fuel cell by ethylenediamine-tetramethylene phosphonic acid. J Power Sources 210:154–157

    Article  CAS  Google Scholar 

  24. Zacharska M, Leahy JJ, Beloshapkin S, Guo Y, Lisitsyn AS, Podyacheva OY (2016) Factors influencing the performance of Pd/C catalysts in the green production of hydrogen from formic acid. ChemSusChem 10:720–730

    Article  Google Scholar 

  25. Wang N, Sun Q, Bai R, Li X, Guo G, Yu J (2016) In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J Am Chem Soc 138:7484–7487

    Article  CAS  PubMed  Google Scholar 

  26. Huang B, Wang T, Lei C, Chen W, Zeng G, Maran F (2016) Highly efficient and selective catalytic hydrogenation of acetylene in N, N-dimethylformamide at room temperature. J Catal 339:14–20

    Article  CAS  Google Scholar 

  27. Gorgas N, Brünig J, Stöger B, Vanicek S, Tilset M, Veiros LF, Kirchner K (2019) Efficient selective semihydrogenation of internal alkynes catalyzed by cationic iron(II) hydride complexes. J Am Chem Soc 141:17452–17458

    Article  CAS  PubMed  Google Scholar 

  28. Kiwi ML, Joannet E (2005) Solvent-free selective hydrogenation of 2-butyne-1,4-diol over structured palladium catalyst. Ind Eng Chem Res 44:6148–6153

    Article  Google Scholar 

  29. Telkar M, Rode C, Rane V, Jaganathan R, Chaudhari R (2001) Selective hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol:roles of ammonia, catalyst pretreatment and kinetic studies. Appl Catal A 216:13–22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21978032, 21676045, 21603198, 21377018, 21770643 and 21872135), the Science and Technology Innovation Fund in Dalian City (Grant No. 2019J12GX028), and the Fundamental Research Funds for the Central Universities (Grant No. DUT18LK34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinkui Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wang, X., Chen, X. et al. A Schiff Base Modified Pd Catalyst for Selective Hydrogenation of 2-Butyne-1,4-diol to 2-Butene-1,4-diol. Catal Lett 150, 2150–2157 (2020). https://doi.org/10.1007/s10562-020-03125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03125-y

Keywords

Navigation