Skip to main content
Log in

Relationship Between OER Activity and Annealing Temperature of Sputter-Deposited Flat IrO2 Thin Films

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

IrO2 is a state-of-the-art catalyst that can be used in acidic conditions and has potential for application as an oxygen evolution reaction (OER) catalyst in proton exchange membrane electrolyzers. IrO2 is subjected to heat treatment at the synthesis and at the preparation of the catalyst layer, and fundamental studies regarding the synthesis conditions, resulting surface properties, and crystallinity with respect to the heat treatment are therefore of great importance. Herein, we prepared IrO2 thin films annealed at different temperatures and investigated the relationship among the OER activity, crystallinity, film resistivity, and annealing temperature using various analytical techniques. We show that the areal OER activity decreases as the annealing temperature increases, but the specific OER activity remains unchanged. There was no correlation between the specific OER activity and film properties such as conductivity. On the other hand, a correlation was observed between the electrochemical active surface area and Ir 4f peak position, which changed with the annealing temperature of the prepared IrO2 films.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Carmo M, Fritz DL, Merge J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934. https://doi.org/10.1016/j.ijhydene.2013.01.151

    Article  CAS  Google Scholar 

  2. Abbott DF, Lebedev D, Waltar K, Povia M, Nachtegaal M, Fabbri E, Coperet C, Schmidt TJ (2016) Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS. Chem Mater 28(18):6591–6604. https://doi.org/10.1021/acs.chemmater.6b02625

    Article  CAS  Google Scholar 

  3. Godinez-Salomon F, Albiter L, Alia SM, Pivovar BS, Camacho-Forero LE, Balbuena PB, Mendoza-Cruz R, Arellano-Jimenez MJ, Rhodes CP (2018) Self-supported hydrous iridium-nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catal 8(11):10498–10520. https://doi.org/10.1021/acscatal.8b02171

    Article  CAS  Google Scholar 

  4. Weber D, Schoop LM, Wurmbrand D, Laha S, Podjaski F, Duppel V, Muller K, Starke U, Lotsch BV (2018) IrOOH nanosheets as acid stable electrocatalysts for the oxygen evolution reaction. J Mater Chem A 6(43):21558–21566. https://doi.org/10.1039/c8ta07950a

    Article  CAS  Google Scholar 

  5. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3(3):399–404. https://doi.org/10.1021/jz2016507

    Article  CAS  PubMed  Google Scholar 

  6. Lim J, Park D, Jeon SS, Roh C-W, Choi J, Yoon D, Park M, Jung H, Lee H (2018) Ultrathin IrO2 nanoneedles for electrochemical water oxidation. Adv Funct Mater 28(4):1704796. https://doi.org/10.1002/adfm.201704796

    Article  CAS  Google Scholar 

  7. Nong HN, Reier T, Oh HS, Gliech M, Paciok P, Vu THT, Teschner D, Heggen M, Petkov V, Schlogl R, Jones T, Strasser P (2018) A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts. Nat Catal 1(11):841–851. https://doi.org/10.1038/s41929-018-0153-y

    Article  CAS  Google Scholar 

  8. Reier T, Teschner D, Lunkenbein T, Bergmann A, Selve S, Kraehnert R, Schlogl R, Strasser P (2014) Electrocatalytic oxygen evolution on iridium oxide: uncovering catalyst-substrate interactions and active iridium oxide species. J Electrochem Soc 161(9):F876–F882. https://doi.org/10.1149/2.0411409jes

    Article  CAS  Google Scholar 

  9. Trasatti S (1984) Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim Acta 29(11):1503–1512. https://doi.org/10.1016/0013-4686(84)85004-5

    Article  CAS  Google Scholar 

  10. Barr TL, Seal S (1995) Nature of the use of adventitious carbon as a binding-energy standard. J Vac Sci Technol A 13(3):1239–1246. https://doi.org/10.1116/1.579868

    Article  CAS  Google Scholar 

  11. McCrory CCL, Jung SH, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987. https://doi.org/10.1021/ja407115p

    Article  CAS  PubMed  Google Scholar 

  12. Kim Y-T, Lopes PP, Park S-A, Lee AY, Lim J, Lee H, Back S, Jung Y, Danilovic N, Stamenkovic V, Erlebacher J, Snyder J, Markovic NM (2017) Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. Nat Commun 8(1):1449. https://doi.org/10.1038/s41467-017-01734-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith RDL, Sporinova B, Fagan RD, Trudel S, Berlinguette CP (2014) Facile photochemical preparation of amorphous iridium oxide films for water oxidation catalysis. Chem Mater 26(4):1654–1659. https://doi.org/10.1021/cm4041715

    Article  CAS  Google Scholar 

  14. Yang L, Yu GT, Ai X, Yan WS, Duan HL, Chen W, Li XT, Wang T, Zhang CH, Huang XR, Chen JS, Zou XX (2018) Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat Commun 9:9. https://doi.org/10.1038/s41467-018-07678-w

    Article  CAS  Google Scholar 

  15. Kotz R, Neff H, Stucki S (1984) Anodic iridium oxide-films - xps-studies of oxidation-state changes and O2-evolution. J Electrochem Soc 131(1):72–77. https://doi.org/10.1149/1.2115548

    Article  Google Scholar 

  16. Lodi G, Debattisti A, Benedetti A, Fagherazzi G, Kristof J (1988) Formation of iridium metal in thermally prepared iridium dioxide coatings. J Electroanal Chem 256(2):441–445. https://doi.org/10.1016/0022-0728(88)87017-7

    Article  CAS  Google Scholar 

  17. Cherevko S, Reier T, Zeradjanin AR, Pawolek Z, Strasser P, Mayrhofer KJJ (2014) Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem Commun 48:81–85. https://doi.org/10.1016/j.elecom.2014.08.027

    Article  CAS  Google Scholar 

  18. Xu YB, Yamazaki M, Villars P (2011) Inorganic materials database for exploring the nature of material. Jpn J Appl Phys 50(11):5. https://doi.org/10.1143/jjap.50.11rh02

    Article  Google Scholar 

  19. Hackwood S, Dayem AH, Beni G (1982) Amorphous-nonmetal-to-crystalline-metal transition in electrochromic iridium oxide films. Phys Rev B 26(2):471–478. https://doi.org/10.1103/PhysRevB.26.471

    Article  CAS  Google Scholar 

  20. Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJJ (2016) Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today 262:170–180. https://doi.org/10.1016/j.cattod.2015.08.014

    Article  CAS  Google Scholar 

  21. Boudart M (1985) Heterogeneous catalysis by metals. J Mol Catal 30(1):27–38. https://doi.org/10.1016/0304-5102(85)80014-6

    Article  CAS  Google Scholar 

  22. Beniya A, Higashi S (2019) Towards dense single-atom catalysts for future automotive applications. Nat Catal 2(7):590–602. https://doi.org/10.1038/s41929-019-0282-y

    Article  CAS  Google Scholar 

  23. Liang X, Shi L, Liu Y, Chen H, Si R, Yan W, Zhang Q, Li G-D, Yang L, Zou X (2019) Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew Chem Int Ed 58:1–6. https://doi.org/10.1002/anie.201900796

    Article  CAS  Google Scholar 

  24. Chen J, Cui P, Zhao G, Rui K, Lao M, Chen Y, Zheng X, Jiang Y, Pan H, Dou SX, Sun W (2019) Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew Chem Int Ed 58(36):12540–12544. https://doi.org/10.1002/anie.201907017

    Article  CAS  Google Scholar 

  25. Tackett BM, Sheng WC, Kattel S, Yao SY, Yan BH, Kuttiyiel KA, Wu QY, Chen JGG (2018) Reducing iridium loading in oxygen evolution reaction electrocatalysts using core-shell particles with nitride cores. ACS Catal 8(3):2615–2621. https://doi.org/10.1021/acscatal.7b04410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge K. Takatani, N. Takahashi, and K. Kitazumi for technical assistance with SEM and XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shougo Higashi.

Ethics declarations

Competing interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tachikawa, T., Beniya, A., Shigetoh, K. et al. Relationship Between OER Activity and Annealing Temperature of Sputter-Deposited Flat IrO2 Thin Films. Catal Lett 150, 1976–1984 (2020). https://doi.org/10.1007/s10562-020-03105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03105-2

Keywords

Navigation