Skip to main content
Log in

Zn/ZnO Heterostructure for the Application of MO Degradation and NO Removal

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, Zn/ZnO composite photocatalyst was successfully synthesized by simple hydrothermal method. Photocurrent test shows that the presence of Zn can effectively improve the light response of composites. Electrochemical impedance spectroscopy indicates that Zn/ZnO has higher point and separation efficiency and faster carrier transmission. Degradation tests of methyl orange showed that Zn/ZnO had higher degradation efficiency than commercial ZnO. In the same time, Zn/ZnO can degrade nearly 90% of methyl orange, while commercial zinc oxide has less than 10%. Meanwhile, the photocatalyst synthesized in the test of photocatalytic removal of NO also shows higher photocatalytic activity. Compared with commercial ZnO, which removed 48% of NO in 20 min, Zn/ZnO could remove 74% of NO in 8 min, and NO will be further oxidized to NO3 after being oxidized to NO2, which can effectively reduce secondary pollution in the reaction process. These results indicate that Zn/ZnO composite photocatalysts have high photocatalytic activity in both solid–liquid and gas–solid systems.

Graphic Abstract

Photodegradation of MO (a), and NO removal (b) photocatalytic mechanism of Zn/ZnO under irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Jung HJ, Koutavarapu R, Lee S, Kim JH, Choi HC, Choi MY (2018) Enhanced photocatalytic degradation of lindane using metal–semiconductor Zn@ZnO and ZnO/Ag nanostructures. J Environ Sci 74:107–115

    Article  Google Scholar 

  2. Zhang P, Lou XW (2019) Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv Mater. https://doi.org/10.1002/adma.201900281

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee B-H, Park S, Kim M, Sinha AK, Lee SC, Jung E, Chang WJ, Lee K-S, Kim JH, Cho S-P (2019) Reversible and cooperative photoactivation of single-atom Cu/TiO 2 photocatalysts. Nat Mater 18:620

    Article  CAS  Google Scholar 

  4. Wang Z, Li C, Domen K (2019) Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev 48:2109–2125

    Article  CAS  Google Scholar 

  5. Zhang L, Ran J, Qiao S-Z, Jaroniec M (2019) Characterization of semiconductor photocatalysts. Chem Soc Rev 48(20):5184–5206

    Article  CAS  Google Scholar 

  6. Wang Q, Domen K (2019) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev. https://doi.org/10.1021/acs.chemrev.9b00201

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ong CB, Ng LY, Mohammad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551

    Article  CAS  Google Scholar 

  8. Yu H-W, Wang J, Yan X-A, Wang J, Cheng P-F, Xia C-J (2019) Effect of surfactants on the morphology and photocatocatalytic properties of ZnO nanostructures. Optik 185:990–996

    Article  CAS  Google Scholar 

  9. Wang H, Ni Y (2018) Zn/ZnO dendrites arising the heat-treatment of Zn dendrites and their photocatalytic reduction of Cr(VI). Mater Res Bull 103:96–103

    Article  CAS  Google Scholar 

  10. Mangrulkar PA, Chilkalwar AA, Kotkondawar AV, Manwar NR, Antony PS, Hippargi G, Labhsetwar N, Trachtenberg MC, Rayalu SS (2017) Plasmonic nanostructured Zn/ZnO composite enhances carbonic anhydrase driven photocatalytic hydrogen generation. J CO2 Util 17:207–212

    Article  CAS  Google Scholar 

  11. Chang Y-M, Lin M-L, Lai T-Y, Chen C-H, Lee H-Y, Lin C-M, Wu Y-CS, Lin Y-F, Juang J-Y (2017) Broadband omnidirectional light trapping in gold-decorated ZnO nanopillar arrays. ACS Appl Mater Interfaces 9:11985–11992

    Article  CAS  Google Scholar 

  12. Núñez J, Fresno F, Platero-Prats AE, Jana P, Fierro JL, Coronado JM, Serrano DP, de la Peña O’Shea VA (2016) Ga-promoted photocatalytic H2 production over Pt/ZnO nanostructures. ACS Appl Mater Interfaces 8:23729–23738

    Article  Google Scholar 

  13. Liu HR, Shao GX, Zhao JF, Zhang ZX, Zhang Y, Liang J, Liu XG, Jia HS, Xu BS (2012) Worm-like Ag/ZnO core-shell heterostructural composites: fabrication, characterization, and photocatalysis. J Phys Chem C 116:16182–16190

    Article  CAS  Google Scholar 

  14. Zeng H, Cai W, Liu P, Xu X, Zhou H, Klingshirn C, Kalt H (2008) ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal− semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2:1661–1670

    Article  CAS  Google Scholar 

  15. Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K (2007) Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem 46:6980–6986

    Article  CAS  Google Scholar 

  16. Li P, Wei Z, Wu T, Peng Q, Li Y (2011) Au− ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc 133:5660–5663

    Article  CAS  Google Scholar 

  17. Y. Wang, X.-N. Meng, J.-L. Cao (2020) Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J Hazard Mater 381:120944

    Article  CAS  Google Scholar 

  18. Zhang Y, Xiang Q, Xu J, Xu P, Pan Q, Li F (2009) Self-assemblies of Pd nanoparticles on the surfaces of single crystal ZnO nanowires for chemical sensors with enhanced performances. J Mater Chem 19:4701–4706

    Article  CAS  Google Scholar 

  19. Ba-Abbad MM, Kadhum AAH, Mohamad AB, Takriff MS, Sopian K (2013) Visible light photocatalytic activity of Fe3+-doped ZnO nanoparticle prepared via sol–gel technique. Chemosphere 91:1604–1611

    Article  CAS  Google Scholar 

  20. Panigrahy B, Aslam M, Bahadur D (2010) Aqueous synthesis of Mn-and Co-doped ZnO nanorods. J Phys Chem C 114:11758–11763

    Article  CAS  Google Scholar 

  21. Lee J, Shim HS, Lee M, Song JK, Lee D (2011) Size-controlled electron transfer and photocatalytic activity of ZnO–Au nanoparticle composites. J Phys Chem Lett 2:2840–2845

    Article  CAS  Google Scholar 

  22. Wu C, Shen L, Yu H, Zhang Y-C, Huang Q (2012) Solvothermal synthesis of Cu-doped ZnO nanowires with visible light-driven photocatalytic activity. Mater Lett 74:236–238

    Article  CAS  Google Scholar 

  23. Ma H, Yue L, Yu C, Dong X, Zhang X, Xue M, Zhang X, Fu Y (2012) Synthesis, characterization and photocatalytic activity of Cu-doped Zn/ZnO photocatalyst with carbon modification. J Mater Chem 22:23780

    Article  CAS  Google Scholar 

  24. Guo H-L, Zhu Q, Wu X-L, Jiang Y-F, Xie X, Xu A-W (2015) Oxygen deficient ZnO1−xnanosheets with high visible light photocatalytic activity. Nanoscale 7:7216–7223

    Article  CAS  Google Scholar 

  25. Cao L, Zhu L, Ye Z (2013) Enhancement of p-type conduction in Ag-doped ZnO thin films via Mg alloying: the role of oxygen vacancy. J Phys Chem Solids 74:668–672

    Article  CAS  Google Scholar 

  26. Ahmad M, Ahmed E, Zhang Y, Khalid NR, Xu J, Ullah M, Hong Z (2013) Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis. Curr Appl Phys 13:697–704

    Article  Google Scholar 

  27. Yang L, Wang P, Yin J, Wang C, Dong G, Wang Y, Ho W (2019) Engineering of reduced graphene oxide on nanosheet–g-C3N4/perylene imide heterojunction for enhanced photocatalytic redox performance. Appl Catal B 250:42–51

    Article  CAS  Google Scholar 

  28. Zhang L, Du L, Yu X, Tan S, Cai X, Yang P, Gu Y, Mai W (2014) Significantly enhanced photocatalytic activities and charge separation mechanism of Pd-decorated ZnO–graphene oxide nanocomposites. ACS Appl Mater Interfaces 6:3623–3629

    Article  CAS  Google Scholar 

  29. Dong G, Yang L, Wang F, Zang L, Wang C (2016) Removal of nitric oxide through visible light photocatalysis by g-C3N4 modified with perylene imides. ACS Catal 6:6511–6519

    Article  CAS  Google Scholar 

  30. Lin W-H, Chiu Y-H, Shao P-W, Hsu Y-J (2016) Metal-particle-decorated ZnO nanocrystals: photocatalysis and charge dynamics. ACS Appl Mater Interfaces 8:32754–32763

    Article  CAS  Google Scholar 

  31. Lu J, Li J, Xu C, Li Y, Dai J, Wang Y, Lin Y, Wang S (2014) Direct resonant coupling of Al surface plasmon for ultraviolet photoluminescence enhancement of ZnO microrods. ACS Appl Mater Interfaces 6:18301–18305

    Article  CAS  Google Scholar 

  32. Yin H, Yu K, Song C, Huang R, Zhu Z (2014) Synthesis of Au-decorated V2O5@ZnO heteronanostructures and enhanced plasmonic photocatalytic activity. ACS Appl Mater Interfaces 6:14851–14860

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2017D01C022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yang, L., Li, J. et al. Zn/ZnO Heterostructure for the Application of MO Degradation and NO Removal. Catal Lett 150, 1985–1992 (2020). https://doi.org/10.1007/s10562-020-03102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03102-5

Keywords

Navigation