Skip to main content
Log in

The Effect of Mn Content on Catalytic Activity of the Co–Mn–Ce Catalysts for Propane Oxidation: Importance of Lattice Defect and Surface Active Species

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Composite oxide catalysts with Co/Mn/Ce molar ratio of 3:x:2(x = 1, 3, 5 and 7) have been successfully prepared by co-precipitation method. The crystal phase structure, elemental valence, oxygen vacancy and reductivity of the catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), H2 temperature program reduction(H2-TPR) and in situ DRIFTs. The results demonstrated that when x = 1, the Co–Mn–Ce catalyst had the smallest grain size and oxygen vacancy. A flow reactor experimental system was used to analyze the effect of Mn content on light-off temperature (T10) and complete oxidation temperature (T90) of propane oxidation over Co–Mn–Ce catalysts under anhydrous condition and 5% vol of water vapor. The results showed that when x = 1, the catalyst exhibits the highest activity (T10 = 200 °C, T90 = 307 °C) and water tolerance among the four catalysts. It indicated that when x = 1, the incorporation of Mn content can improve the ability of Co–Mn–Ce catalysts for propane oxidation. Based on the Langmuir–Hinshelwood theory, the surface chemical reaction pathway of propane oxidation was constructed and it revealed that the major active sites of Co–Mn–Ce catalysts mainly depend on surface oxygen vacancy and the surface active species (Mn4+,Oads).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo H, Ling ZH, Cheng HR, Simpson IJ, Lyu XP, Wang XM, Shao M, Lu HX, Ayoko G, Zhang YL, Saunders SM, Lam SHM, Wang JL, Blake DR (2017) Sci Total Environ 574:1021–1043. https://doi.org/10.1016/j.scitotenv.2016.09.116

    Article  CAS  PubMed  Google Scholar 

  2. Riipinen I, Yli-Juuti T, Pierce JR, Petäjä T, Worsnop DR, Kulmala M, Donahue NMJNG (2012) Nat Geosci 5:453–458. https://doi.org/10.1038/ngeo1499

    Article  CAS  Google Scholar 

  3. Liu T, Wang X, Deng W, Hu Q, Ding X, Zhang Y, He Q, Zhang Z, Lü S, Bi X, Chen J, Yu J (2015) Atmos Chem Phys 15:9049–9062. https://doi.org/10.5194/acp-15-9049-2015

    Article  CAS  Google Scholar 

  4. Everaert K, Baeyens J (2004) J Hazard Mater 109(1–3):113–139. https://doi.org/10.1016/j.jhazmat.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  5. Taylor MN, Zhou W, Garcia T, Solsona B, Carley AF, Kiely CJ, Taylor SH (2012) J Catal 285(1):103–114. https://doi.org/10.1016/j.jcat.2011.09.019

    Article  CAS  Google Scholar 

  6. Taylor M, Ndifor EN, Garcia T, Solsona B, Carley AF, Taylor SH (2008) Appl Catal A 350(1):63–70. https://doi.org/10.1016/j.apcata.2008.07.045

    Article  CAS  Google Scholar 

  7. Yang JS, Jung WY, Lee GD, Park SS, Jeong ED, Kim HG, Hong SS (2008) J Ind Eng Chem 14(6):779–784. https://doi.org/10.1016/j.jiec.2008.05.008

    Article  CAS  Google Scholar 

  8. Li TY, Chiang SJ, Liaw BJ, Chen YZ (2011) Appl Catal B 103(1–2):143–148. https://doi.org/10.1016/j.apcatb.2011.01.020

    Article  CAS  Google Scholar 

  9. Genuino HC, Dharmarathna S, Njagi EC, Mei MC, Suib SL (2012) J Phys Chem C 116(22):12066–12078. https://doi.org/10.1021/jp301342f

    Article  CAS  Google Scholar 

  10. Bampenrat A, Meeyoo V, Kitiyanan B, Rangsunvigit P, Rirksomboon T (2008) Catal Commun 9(14):2349–2352. https://doi.org/10.1016/j.catcom.2008.05.029

    Article  CAS  Google Scholar 

  11. Trovarelli A (1996) Catal Rev 38(4):439–520. https://doi.org/10.1080/01614949608006464

    Article  CAS  Google Scholar 

  12. Hu Z, Liu X, Meng D, Guo Y, Guo Y, Lu G (2016) ACS Catal 6(4):2265–2279. https://doi.org/10.1021/acscatal.5b02617

    Article  CAS  Google Scholar 

  13. Hu F, Peng Y, Chen J, Liu S, Song H, Li J (2019) Appl Catal B 240:329–336. https://doi.org/10.1016/j.apcatb.2018.06.024

    Article  CAS  Google Scholar 

  14. Mo S, Li S, Li J, Peng S, Chen J, Chen Y (2016) Catal Commun 87:102–105. https://doi.org/10.1016/j.catcom.2016.09.017

    Article  CAS  Google Scholar 

  15. Zhang W, Hu L, Wu F, Li J (2017) Catal Lett 147(2):407–415. https://doi.org/10.1007/s10562-016-1956-6

    Article  CAS  Google Scholar 

  16. Shang DH, Zhong Q, Cai W (2015) Appl Surf Sci 325:211–216. https://doi.org/10.1016/j.apsusc.2014.11.056

    Article  CAS  Google Scholar 

  17. Sun YH, Zhang GJ, Xu Y, Zhang RG (2019) Int J Hydrog Energy 44(41):22972–22982. https://doi.org/10.1016/j.ijhydene.2019.07.010

    Article  CAS  Google Scholar 

  18. Garcilaso V, Barrientos J, Bobadilla LF, Laguna OH (2019) Renew Energy 132:1141–1150. https://doi.org/10.1016/j.renene.2018.08.080

    Article  CAS  Google Scholar 

  19. Konsolakis M, Sgourakis M, Carabineiro SAC (2015) Appl Surf Sci 341:48–54. https://doi.org/10.1016/j.apsusc.2015.02.188

    Article  CAS  Google Scholar 

  20. Zou G, Fan Z, Yao X, Zhang Y, Zhang Z, Chen M, Shangguan W (2017) Chin J Catal 38(3):564–572. https://doi.org/10.1016/s1872-2067(17)62758-x

    Article  CAS  Google Scholar 

  21. Wang C, Zhang C, Hua W, Guo Y, Lu G, Gil S, Giroir-Fendler A (2017) Chem Eng J 315:392–402. https://doi.org/10.1016/j.cej.2017.01.007

    Article  CAS  Google Scholar 

  22. Mukherjee D, Devaiah D, Venkataswamy P, Vinodkumar T, Smirniotis PG, Reddy BM (2018) New J Chem 42:14149–14156. https://doi.org/10.1039/C8NJ01184B

    Article  CAS  Google Scholar 

  23. Gómez DM, Galvita VV, Gatica JM, Hilario V, Marin GB (2014) Phys Chem Chem Phys 16(23):11447–11455. https://doi.org/10.1039/c4cp00886c

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Li X, Zeng X, Zhu T (2019) Appl Catal A 572:61–70. https://doi.org/10.1016/j.apcata.2018.12.026

    Article  CAS  Google Scholar 

  25. Zhang S, Liu S, Zhu X, Yang Y, Hu W, Zhao H, Qu R, Zheng C, Gao X (2019) Appl Surf Sci 479:1132–1140. https://doi.org/10.1016/j.apsusc.2019.02.118

    Article  CAS  Google Scholar 

  26. Kim SC, Shim W (2010) Appl Catal B 98(3–4):180–185. https://doi.org/10.1016/j.apcatb.2010.05.027

    Article  CAS  Google Scholar 

  27. Álvarez-Galván MC, dela Peña O’Shea VA, Fierro JLG, Arias PL (2003) Catal Commun 4(5):223–228. https://doi.org/10.1016/s1566-7367(03)00037-2

    Article  Google Scholar 

  28. Castaño MH, Molina R, Moreno S (2017) Mol Catal 443:117–124. https://doi.org/10.1016/j.mcat.2017.09.015

    Article  CAS  Google Scholar 

  29. Tang W, Wu X, Li S, Li W, Chen Y (2014) Catal Commun 56:134–138. https://doi.org/10.1016/j.catcom.2014.07.023

    Article  CAS  Google Scholar 

  30. Faure B, Alphonse P (2016) Appl Catal B 180:715–725. https://doi.org/10.1016/j.apcatb.2015.07.019

    Article  CAS  Google Scholar 

  31. Todorova S, Kolev H, Holgado JP, Kadinov G, Bonev C, Pereñíguez R, Caballero A (2010) Appl Catal B 94(1–2):46–54. https://doi.org/10.1016/j.apcatb.2009.10.019

    Article  CAS  Google Scholar 

  32. Cuo Z, Deng Y, Li W, Peng S, Zhao F, Liu H, Chen Y (2018) Appl Surf Sci 456:594–601. https://doi.org/10.1016/j.apsusc.2018.06.207

    Article  CAS  Google Scholar 

  33. Wang X, Kang Q, Li D (2008) Catal Commun 9(13):2158–2162. https://doi.org/10.1016/j.catcom.2008.04.021

    Article  CAS  Google Scholar 

  34. Wang Y, Deng W, Wang Y, Guo L, Ishihara T (2018) Mol Catal 459:61–70. https://doi.org/10.1016/j.mcat.2018.08.022

    Article  CAS  Google Scholar 

  35. Morales M, Barbero B, Cadus L (2006) Appl Catal B 67(3–4):229–236. https://doi.org/10.1016/j.apcatb.2006.05.006

    Article  CAS  Google Scholar 

  36. Kim MH, Cho KH, Shin CH, Kang SE, Ham SW (2011) Korean J Chem Eng 28(4):1139–1143. https://doi.org/10.1007/s11814-011-0035-3

    Article  CAS  Google Scholar 

  37. Lin J, Guo Y, Chen X, Li C, Lu S, Liew KM (2017) Catal Lett 148(1):181–193. https://doi.org/10.1007/s10562-017-2227-x

    Article  CAS  Google Scholar 

  38. Kan J, Deng L, Li B, Huang Q, Zhu S, Shen S, Chen Y (2017) Appl Catal A 530:21–29. https://doi.org/10.1016/j.apcata.2016.11.013

    Article  CAS  Google Scholar 

  39. Bae J, Kim BS, Jeong H, Lee H (2019) Mol Catal 467:9–15. https://doi.org/10.1016/j.mcat.2019.01.025

    Article  CAS  Google Scholar 

  40. Fuentes RO, Baker RT (2008) J Phys Chem C 113(3):914–924. https://doi.org/10.1021/jp808825c

    Article  CAS  Google Scholar 

  41. Liu Y, Dai H, Deng J, Du Y, Xi L, Zhao Z, Wang Y, Gao B, Yang H, Guo G (2013) Appl Catal B 140–141:493–505. https://doi.org/10.1016/j.apcatb.2013.04.051

    Article  CAS  Google Scholar 

  42. Tang W, Wu X, Li S, Shan X, Liu G, Chen Y (2015) Appl Catal B 162:110–121. https://doi.org/10.1016/j.apcatb.2014.06.030

    Article  CAS  Google Scholar 

  43. Velu S, Shah N, Jyothi TM, Sivasanker S (1999) Microporus Mesoporus Mater 33:61–75. https://doi.org/10.1016/S1387-1811(99)00123-7

    Article  CAS  Google Scholar 

  44. Zhao J, Zhang Y, Zhang S, Wang Q, Chen M, Hu T, Meng C (2018) Microporus Mesoporus Mater 268:16–24. https://doi.org/10.1016/j.micromeso.2018.04.009

    Article  CAS  Google Scholar 

  45. Song W, Poyraz AS, Meng Y, Ren Z, Chen SY, Suib SL (2014) Chem Mater 26(15):4629–4639. https://doi.org/10.1021/cm502106v

    Article  CAS  Google Scholar 

  46. Tang W, Li W, Li D, Liu G, Wu X, Chen Y (2014) Catal Lett 144(11):1900–1910. https://doi.org/10.1007/s10562-014-1340-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Fund (51676090) and the National Engineering Laboratory Open Fund for Mobile Source Pollution Emission Control Technology (NELMS2018A18) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Cui, C., Li, K. et al. The Effect of Mn Content on Catalytic Activity of the Co–Mn–Ce Catalysts for Propane Oxidation: Importance of Lattice Defect and Surface Active Species. Catal Lett 150, 1505–1514 (2020). https://doi.org/10.1007/s10562-019-03061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03061-6

Keywords

Navigation