Skip to main content
Log in

Total oxidation of propane over Cu-Mn mixed oxide catalysts prepared by co-precipitation method

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The catalytic activity of Cu-Mn mixed oxides with varying Cu/Mn ratios prepared by co-precipitation method was examined for the total oxidation of propane. The nature and phase of the metal oxide species formed were characterized by various methods such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (TPR) as well as BET surface area measurement. The co-precipitation method provides highly interdispersed copper and manganese metallic elements forming Cu-Mn mixed oxide of spinel structure (Cu1.5 Mn1.5O4). Besides the spinel-type Cu-Mn mixed oxide, CuO or Mn2O3 phases could be formed depending on the Cu/Mn molar ratio of their precursors. The catalytic activity of Cu-Mn mixed oxide catalyst for propane oxidation was much higher than those of single metal oxides of CuO and Mn2O3. The higher catalytic activity likely originates from a synergic effect of spinel-type Cu-Mn mixed oxide and CuO. The easier reducibility and BET surface area seems to be partially responsible for the high activity of Cu-Mn mixed oxide for total oxidation of propane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Neyestanaki, N. Kumar and L.-E. Lindfors, Appl. Catal. B: Envron., 7, 95 (1995).

    Article  Google Scholar 

  2. M. Ferrandon, J. Carnö, S. Järås and E. Björnbom, Appl. Catal. A: Gen., 180, 141 (1999).

    Article  CAS  Google Scholar 

  3. P. Papaefthimiou, T. Ioannides and X. E. Verykios, Appl. Catal. B: Envron., 15, 75 (1998).

    Article  CAS  Google Scholar 

  4. M. R. Morales, B. P. Barbero and L. E. Cadùs, Appl. Catal. B: Envron., 67, 229 (2006).

    Article  CAS  Google Scholar 

  5. P. Marècot, A. Fakche, B. Kellali, G. Mabilon, M. Prigent and J. Barbier, Appl. Catal. B: Envron., 3, 283 (1994).

    Article  Google Scholar 

  6. T. F. Garetto, E. Rincón and C. R. Apesteguia, Appl. Catal. B: Envron., 48, 167 (2004).

    Article  CAS  Google Scholar 

  7. Y. Yazawa, N. Takagi, H. Yoshida, S. Komai and A. Satsuma, T. Tanaka, S. Yoshida and T. Hattori, Appl. Catal. A: Gen., 233, 103 (2002).

    Article  CAS  Google Scholar 

  8. J. Carnö, M. Ferrandon, E. Björnbom and S. Järås, Appl. Catal. A: Gen., 155, 265 (1997).

    Article  Google Scholar 

  9. R. Craciun, B. Nentwick, K. Hadjiivanov and H. Knözinger, Appl. Catal. A: Gen., 243, 67 (2003).

    Article  CAS  Google Scholar 

  10. A. A. Mirzaei, H. R. Shaterian and M. Kaykhaii, Appl. Sur. Sci., 239, 246 (2005).

    Article  CAS  Google Scholar 

  11. G. Fortunato, H. R. Oswald and A. Reller, J. Mater. Chem., 11, 905 (2001).

    Article  CAS  Google Scholar 

  12. M. Krämer, T. Schmidt, L. Stöwe and W. F. Maier, Appl. Catal. A: Gen., 302, 257 (2006).

    Article  Google Scholar 

  13. C. Jones, K. J. Coles, S. H. Taylor, M. J. Crudace and G. J. Hutchings, J. Mol. Catal. A., 305, 121 (2009).

    Article  CAS  Google Scholar 

  14. E.C. Njagi, C.H. Chen, H. Genuino, H. Galindo, H. Huang and S. L. Suib, Appl. Catal. B: Envron., 99, 103 (2004).

    Article  Google Scholar 

  15. G. J. Hutchings, A. A. Mirzaei, M. R. H. Siddiqui and S. H. Taylor, Appl. Catal. A: Gen., 166, 143 (1998).

    Article  CAS  Google Scholar 

  16. S. B. Kanungo, J. Catal., 58, 419 (1979).

    Article  CAS  Google Scholar 

  17. H. Chen, X. Tong and Y. Li, Appl. Catal. A: Gen., 370, 59 (2009).

    Article  CAS  Google Scholar 

  18. A. Wöllner, F. Lange, H. Schmelz and H. Knözinger, Appl. Catal. A: Gen., 94, 181 (1993).

    Article  Google Scholar 

  19. I. Spassova, M. Khristova, D. Panayotov and D. Mehandjiev, J. Catal., 185, 43 (1999).

    Article  CAS  Google Scholar 

  20. K. Zhi, Q. Liu, Y. Zhang, S. He and R. He, J. Fuel Chem. Technol., 38(4), 445 (2010).

    Article  CAS  Google Scholar 

  21. Y. Tanaka, T. Takeguchi, R. Kikuchi and K. Eguchi, Appl. Catal. A: Gen., 279, 59 (2005).

    Article  CAS  Google Scholar 

  22. A. P. B. Sinha, N. R. Sanjana and A. B. Biswas, J. Phys. Chem., 62, 191 (1958).

    Article  CAS  Google Scholar 

  23. S. Miahara, J. Phys. Soc. Jpn., 17B-I, 181 (1962).

    Google Scholar 

  24. G. B. Lasse, J. Phys. Chem. Solids, 27, 383 (1966).

    Article  Google Scholar 

  25. S. Veprek, D. L. Cocke, S. Kehl and H. R. Oswald, J. Catal., 100, 250 (1986).

    Article  CAS  Google Scholar 

  26. B. Solsona and T. E. Davies, Appl. Catal. B: Envron., 84, 176 (2008).

    Article  CAS  Google Scholar 

  27. I. R. Leith and M. G. Howden, Appl. Catal., 37, 75 (1992).

    Google Scholar 

  28. S. J. Gentry, N.W. Hurst and A. Jones, J. Chem. Soc. Faraday Trans. I, 77, 603 (1981).

    Article  CAS  Google Scholar 

  29. F. C. Buciuman and F. Patcas, Chem. Eng. Process., 38, 569 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Won Ham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.H., Cho, K.H., Shin, CH. et al. Total oxidation of propane over Cu-Mn mixed oxide catalysts prepared by co-precipitation method. Korean J. Chem. Eng. 28, 1139–1143 (2011). https://doi.org/10.1007/s11814-011-0035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0035-3

Key words

Navigation