Skip to main content
Log in

Morphology Controlled CuO Nanostructures for Efficient Catalytic Reduction of 4-Nitrophenol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Catalytic transformation of nitroaromatic compounds in wastewater using nanostructured catalysts is a promising method for wastewater treatment. Here, we report a systematic study on morphology-dependent catalytic activity of CuO nanostructures for efficient reduction of 4-nitrophenol (4-NP) in water. The morphology of CuO nanostructures was controllably varied from nanorods, nanosheets and hierarchical 3D flower-like structures by simply varying ammonia concentration in a simple wet chemical approach. Catalytic transformation of toxic 4-NP into useful 4-aminophenol by the prepared nanostructured CuO samples were investigated. The impact of morphology on the catalytic activity of nanostructured CuO catalysts was examined. It was observed that hierarchical 3D flower-like CuO catalysts show enhanced catalytic activity as compared to nanorods and nanosheets. The origin of this morphology-dependent catalytic activity of CuO nanostructures is discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xu H, Zhu G, Zheng D, Xi C, Xu X, Shen X (2012) J Colloid Interface Sci 383:75

    CAS  PubMed  Google Scholar 

  2. Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) ACS Appl Mater Inter 6:2174

    CAS  Google Scholar 

  3. Avasthi DK, Mishra YK, Singhal R, Kabiraj D, Mohapatra S, Mohanta B, Gohil NK, Singh N (2010) J Nanosci Nanotechnol 10:2705

    CAS  PubMed  Google Scholar 

  4. Kuriakose S, Bhardwaj N, Singh J, Satpati B (2013) Mohapatra. Beilstein J Nanotechnol 4:763

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sahu K, Singh J, Satpati B, Mohapatra S (2018) J Phys Chem Solids 121:186

    CAS  Google Scholar 

  6. Singh J, Satpati B, Mohapatra S (2017) Plasmonics 12:877

    CAS  Google Scholar 

  7. Kuriakose S, Sahu K, Khan SA, Tripathi A, Avasthi DK, Mohapatra S (2017) Opt Mater 64:47

    CAS  Google Scholar 

  8. Kuriakose S, Satpati B, Mohapatra S (2015) Adv Mater Lett 6:217

    CAS  Google Scholar 

  9. Sahu K, Satpati B, Mohapatra S (2019) Catal Lett 149:2519

    CAS  Google Scholar 

  10. Zhang W, Xiao X, An T, Song Z, Fu J, Sheng G, Cui M (2003) J Chem Technol Biotechnol 78:788

    CAS  Google Scholar 

  11. Sahu K, Singh J, Mohapatra S (2019) Opt Mater 93:58

    CAS  Google Scholar 

  12. Zhao B, Mele G, Pio I, Li J, Palmisano L, Vasapollo G (2010) J Hazard Mater 176:569

    CAS  PubMed  Google Scholar 

  13. Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237

    CAS  PubMed  Google Scholar 

  14. Hayakawa K, Yoshimura T, Esumi K (2003) Langmuir 19:5517

    CAS  Google Scholar 

  15. Saha S, Pal A, Kundu S, Basu S, Pal T (2009) Langmuir 26:2885

    Google Scholar 

  16. Kästner C, Thünemann AF (2016) Langmuir 32:7383

    PubMed  Google Scholar 

  17. Zhou Z, Lu C, Wu X, Zhang X (2013) RSC Adv 3:26066

    CAS  Google Scholar 

  18. Ghosh SK, Mandal M, Kundu S, Nath S, Pal T (2004) Appl Catal A 268:61

    CAS  Google Scholar 

  19. Alif A, Boule P (1991) J Photochem Photobio A 59:357

    CAS  Google Scholar 

  20. Shi F, Zhang Q, Ma Y, He Y, Deng Y (2005) J Am Chem Soc 127:4182

    CAS  PubMed  Google Scholar 

  21. Mandlimath TR, Gopal B (2011) J Mol Catal A 350:9

    CAS  Google Scholar 

  22. Aditya T, Jana J, Singh NK, Pal A, Pal T (2017) ACS Omega 2:1968

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nemanashi M, Meijboom R (2013) J Colloid Interface Sci 389:260

    CAS  PubMed  Google Scholar 

  24. Sharmila G, Thirumarimurugan M, Sivakumar VM (2016) Optik 127:7822

    CAS  Google Scholar 

  25. Konar S, Kalita H, Puvvada N, Tantubay S, Mahto MK, Biswas S, Pathak A (2016) J Catal 336:11

    CAS  Google Scholar 

  26. Bouazizi N, Vieillard J, Thebault P, Desriac F, Clamens T, Bargougui R, Couvrat N, Thoumire O, Brun N, Ladam G, Morin S (2018) Dalton Trans 47:9143

    CAS  PubMed  Google Scholar 

  27. Vieillard J, Bouazizi N, Mohammad NM, Thomas C, Florie D, Radhouane B, Thébault P, Lesouhaitier O, Le Derf F, Azzouz A (2019) Indus Eng Chem Res 58:10179

    CAS  Google Scholar 

  28. Qamar MT, Aslam M, Ismail IM, Salah N, Hameed A (2015) ACS Appl Mater Inter 7:8757

    CAS  Google Scholar 

  29. Bandara J, Kiwi J, Pulgarin C, Pajonk G (1996) J Mol Catal A 111:333

    CAS  Google Scholar 

  30. Xu L, Xu HY, Wang F, Zhang FJ, Meng ZD, Zhao W, Oh WC (2012) J Korean Ceram Soc 49:151

    CAS  Google Scholar 

  31. Chen L, Shet S, Tang H, Wang H, Deutsch T, Yan Y, Turner J, Al-Jassim M (2010) J Mater Chem 20:6962

    CAS  Google Scholar 

  32. Lin XZ, Liu P, Yu JM, Yang GW (2009) J Phys Chem C 113:17543

    CAS  Google Scholar 

  33. Prathap MA, Kaur B, Srivastava R (2012) J Colloid Interface Sci 370:144

    PubMed  Google Scholar 

  34. Al-Gaashani R, Radiman S, Tabet N, Daud AR (2011) J Alloys Compd 509:8761

    CAS  Google Scholar 

  35. Samarasekara P, Kumara NT, Yapa NU (2006) J Phys Cond Matt 18:2417

    CAS  Google Scholar 

  36. Yang Z, Xu J, Zhang W, Liu A, Tang S (2007) J Solid State Chem 180:1390

    CAS  Google Scholar 

  37. Felix S, Chakkravarthy RB, Grace AN (2015) Mater Sci Eng 73:012115

    Google Scholar 

  38. Volanti DP, Keyson D, Cavalcante LS, Simões AZ, Joya MR, Longo E, Varela JA, Pizani PS, Souza AG (2008) J Alloys Compd 459:537

    CAS  Google Scholar 

  39. Huang LS, Yang SG, Li T, Gu BX, Du YW, Lu YN, Shi SZ (2004) J Crystal Growth 260:130

    CAS  Google Scholar 

  40. Ethiraj AS, Kang DJ (2012) Nanoscale Res Lett 7:70

    PubMed  PubMed Central  Google Scholar 

  41. Wang Z, Xu C, Gao G, Li X (2014) RSC Adv 4:13644

    CAS  Google Scholar 

  42. Bhattacharjee A, Ahmaruzzaman M (2016) RSC Adv 6:41348

    CAS  Google Scholar 

  43. Che W, Ni Y, Zhang Y, Ma Y (2015) J Phys Chem Solids 77:1

    CAS  Google Scholar 

  44. Wang Z, Pischedda V, Saxena SK, Lazor P (2002) Solid State Commun 121:275

    CAS  Google Scholar 

  45. Chand P, Gaur A, Kumar A (2013) Superlatt Microstruct 60:129

    CAS  Google Scholar 

  46. Sahu K, Satpati B, Singhal R, Mohapatra S (2019) J Phys Chem Solids 8:109143

    Google Scholar 

  47. Mageshwari K, Sathyamoorthy R (2013) Appl Nanosci 3:161

    CAS  Google Scholar 

  48. Singh DP, Ojha AK, Srivastava ON (2009) J Phys Chem C 113:3409

    CAS  Google Scholar 

  49. Zuo Y, Song JM, Niu HL, Mao CJ, Zhang SY, Shen YH (2016) Nanotechnology 27:145701

    PubMed  Google Scholar 

  50. Vellaichamy B, Periakaruppan P (2016) RSC Adv 6:88837

    CAS  Google Scholar 

Download references

Acknowledgement

KS is obliged to the DST (Department of Science and Technology), New Delhi for funding in the form of DST-WOS-A project (SR/WOS-A/PM-10/2017(G&C)). The authors are thankful to Prof. Shyamal Kumar Saha (IACS, Kolkata) for extending the PL facility and Tapas for his help in PL measurements and acknowledge support from Centre for Research in Nanoscience and Nanotechnology, University of Calcutta for FESEM studies, Guru Gobind Singh Indraprastha University for funding under FRGS project (GGSIPU/DRC/Ph.D./Adm./2016/1563) and DST for providing UV–Vis–NIR and Raman facilities under FIST grant (SR/FST/PSI-167/2011(C)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Mohapatra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, K., Singhal, R. & Mohapatra, S. Morphology Controlled CuO Nanostructures for Efficient Catalytic Reduction of 4-Nitrophenol. Catal Lett 150, 471–481 (2020). https://doi.org/10.1007/s10562-019-03009-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03009-w

Keywords

Navigation