Skip to main content
Log in

CuxOAu–ZnO nano/microstructures with various morphologies and their catalytic applications in reduction in 4-nitrophenol

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this paper, CuxOAu–ZnO nano-catalysts with different morphologies were synthesized by one-step replacement method. The nano-catalysts are characterized by scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. These novel CuxOAu–ZnO nano-catalysts exhibit exceptionally high stability and superior 4-nitrophenol to 4-aminophenol hydrogenation ability. The relationship between catalytic performances and changes of composition were investigated, and the catalytic activity decreased in the following order: CuxO30Au35–ZnO > CuxO38Au35–ZnO > CuxO21Au45–ZnO. The influence of catalytic conditions for the performance of catalysts has also studied. For the CuxO30Au35–ZnO catalysts, the rate constant kapp could be up to 18.6 × 10−3 s−1, and the conversion of the 4-NP could still reach 98.66% after five cycles. The high activity of CuxO30Au35–ZnO may be attributed to the synergistic effect between Au and Cu element. The unique structure and high catalytic performance make CuxOAu–ZnO nano-catalysts for practical applications in 4-nitrophenol reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Jain, S.A. Khan, K. Sharma, Bioresour. Technol. 344, 126305 (2022)

    Article  CAS  PubMed  Google Scholar 

  2. P.V. Nidheesh, R. Gandhimathi, Desalination 299, 1 (2012)

    Article  CAS  Google Scholar 

  3. M.J. Vaidya, S.M. Kulkarni, R.V. Chaudhari, Org Process. Res. Dev. 7, 202 (2003)

    Article  CAS  Google Scholar 

  4. J. Fu, S. Wang, J. Zhu, Mater. Chem. Phys. 207, 315 (2018)

    Article  CAS  Google Scholar 

  5. W. Ye, J. Yu, Y. Zhou, Appl. Catal. B 181, 371 (2016)

    Article  CAS  Google Scholar 

  6. D.N. Zgür, Microporous Mesoporous Mater. 314, 110861 (2020)

    Google Scholar 

  7. W. Liu, Z. Li, J. Environ. Chem. Eng. 8, 103835 (2020)

    Article  CAS  Google Scholar 

  8. L. Gregor, A.K. Reilly, T.A. Dickstein, ACS Omega 3, 14725 (2018)

    Article  Google Scholar 

  9. S. Albonetti, M. Blosi, F. Gatti, Stud. Surf. Sci. Catal. 175, 621 (2010)

    Article  CAS  Google Scholar 

  10. M. Meena Kumari, J. Jacob, D. Philip, Spectrochim. Acta A Mol. Biomol. Spectrosc. 137, 185 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. N.K. Yetim, M.M. Koc, D. Nartop, J. Iran. Chem. Soc. 19, 2569 (2022)

    Article  Google Scholar 

  12. V. Lomonosov, E. Ringe, React Chem. Eng. 7, 1728 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. K. Suwannarat, K. Thongthai, S. Ananta, L. Srisombat, Colloids Surf. A Physicochem. Eng. Asp. 540, 73 (2018)

    Article  CAS  Google Scholar 

  14. S. Chairam, W. Konkamdee, R. Parakhun, J. Saudi Chem. Soc. 21, 656 (2017)

    Article  CAS  Google Scholar 

  15. F.R. Crescencio, R. Red, A. Herrera-Gomez, Mater. Chem. Phys. 201, 289 (2017)

    Article  Google Scholar 

  16. N. Zhang, Y. Meng, Y. Ning, RSC Adv. 11, 13193 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Qin, X. Tan, F. Feng, Appl. Surf. Sci. 561, 150024 (2021)

    Article  CAS  Google Scholar 

  18. S.R. Jena, M.B. Bhavya, S.R. Manippady, J. Phys. Chem. Solids 152, 109935 (2021)

    Article  CAS  Google Scholar 

  19. S. Mehmood, N. K. Janjua, F. Saira, J. Spectrosc. 6210794 (2016)

  20. L. Piao, J. Jiang, S. Yoon, CrystEngComm 22, 26 (2020)

    Google Scholar 

  21. R. Cai, P.R. Ellis, J. Yin, Small 14, 1703734 (2018)

    Article  Google Scholar 

  22. X. Tan, J. Qin, Y. Li, J. Membr. Sci. 397, 122786 (2020)

    CAS  Google Scholar 

  23. S.D. Oh, M.R. Kim, S.H. Choi, J. Ind. Eng. Chem. 14, 687 (2008)

    Article  CAS  Google Scholar 

  24. Y.Y.L. Sip, D.W. Fox, L.R. Shultz, A.C.S. Appl, Nano Mater. 4, 6045 (2021)

    Google Scholar 

  25. L. Rout, A. Kumar, R.S. Dhaka, Appl. Catal. A-Gen. 538, 107 (2017)

    Article  CAS  Google Scholar 

  26. Y. Sugano, Y. Shiraishi, D. Tsukamoto, Angew. Chem. Int. Ed. 52, 5295 (2013)

    Article  CAS  Google Scholar 

  27. T.K. Das, S. Ganguly, S. Remanan, N.C. Das, ChemistrySelect 4(13), 3665–3671 (2019)

    Article  Google Scholar 

  28. T.K. Das, S. Remanan, S. Ghosh, N.C. Das, J. Environ. Eng. 9(1), 104596 (2021)

    CAS  Google Scholar 

  29. T.K. Das, S. Ganguly, S. Remanan, S. Ghosh, N.C. Das, Res. Chem. Intermed. 46(7), 3629–3650 (2020)

    Article  CAS  Google Scholar 

  30. B. Krishnakumar, K. Selvam, M. Swaminathan, Synth. Commun. 41, 1929 (2011)

    Article  CAS  Google Scholar 

  31. V.P. Thai, H. Furuno, N. Saito, J. Appl. Phys. 128, 043305 (2020)

    Article  CAS  Google Scholar 

  32. P. Chomkhuntod, M. Sawangphruk, IOP Publishing Ltd (2022)

  33. P. Dagtepe, P. Viktor, J. Phys. Chem. C 114, 16263 (2010)

    Article  CAS  Google Scholar 

  34. L.L. Zhao, X.H. Ji, X.J. Sun, J. Phys. Chem. C 113, 16645 (2009)

    Article  CAS  Google Scholar 

  35. S.T. Gentry, S.F. Kendra, M.W. Bezpalko, J. Phys. Chem. C 115, 12736 (2011)

    Article  CAS  Google Scholar 

  36. B.V. Crist, Handbook of Monochromatic XPS Spectra (Wiley, Chichester/New York, 2000)

    Google Scholar 

  37. J. Liu, L. Cao, W. Huang, ACS Appl. Mater. Interfaces 3, 3552 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. T.K. Das, N.C. Das, Int. Nano Lett. 12, 223 (2022)

    Article  CAS  Google Scholar 

  39. T.K. Das, S. Remanan, S. Ghosh, S.K. Ghosh, N.C. Das, Environ. Nanotechnol. Monit. Manag. 15, 100411 (2021)

    CAS  Google Scholar 

  40. R.K. Narayanan, S.J. Devaki, Ind. Eng. Chem. 54, 1197 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate financial support from the Natural Science Foundation of Hunan Province (Grant No. 2022JJ60043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1162 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Lan, L., Liu, X. et al. CuxOAu–ZnO nano/microstructures with various morphologies and their catalytic applications in reduction in 4-nitrophenol. J IRAN CHEM SOC 20, 1145–1154 (2023). https://doi.org/10.1007/s13738-022-02741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02741-2

Keywords

Navigation