Skip to main content
Log in

Hydrothermal Synthesis and Characterization of Ce3+ Doped Bi2MoO6 for Water Treatment

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Rhodamine B (RhB) and tetracycline (TC) are the typical organic pollutants in wastewater. More and more attentions have been paid to the removal of them. In the present work, pure and various contents of Ce3+ doped Bi2MoO6 nanostructures were synthesized by a facile hydrothermal method. They were characterized by X-ray diffraction (XRD), UV–Vis diffuse reflectance spectra (UV–Vis DRS), Raman spectra, photoluminescence spectra, scanning electron microscopy (SEM), N2 adsorption–desorption tests and X-ray photoelectron spectra. XRD patterns show that the pure and Ce3+ doped Bi2MoO6 exhibit orthorhombic crystal structure and Ce3+ is successfully doped into Bi2MoO6 lattice. UV–Vis DRS results indicate that a narrower band gap was obtained after Ce3+ doped into Bi2MoO6. SEM images show that the Ce-doped Bi2MoO6 is 3D microspheres constructed by many nanosheets. The photocatalytic activities of the as-prepared samples were evaluated by the degradation of RhB and TC. The 0.5% Ce3+ doped Bi2MoO6 exhibits the best photocatalytic activity of 96.6% within 20 min for RhB removal and 78.2% within 90 min for TC removal, respectively. The improved photocatalytic activity can be ascribed to the low recombination and easy migration of photogenerated electron hole pairs derived from the better crystallinity, optimum optical absorption activity and morphology of microspheres after Ce3+ doping. In addition, it also had a good stability and reusability after ten times of recycling experiments.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li XY, Wang LP, Xu DB et al (2015) CrystEngComm 17:2421

    CAS  Google Scholar 

  2. Mousavi M, Habibi-Yangjeh A, Pouran SR (2018) J Mater Sci: Mater Electron 29:1719

    CAS  Google Scholar 

  3. Shekofteh M, Habibi-Yangjeh A, Abitorabi M et al (2018) Crit Rev Environ Sci Technol 48:806

    Google Scholar 

  4. Zhang XH (2017) Indian J Chem A 56:1028

    Google Scholar 

  5. Pirhashemi M, Habibi-Yangjeh A, Pouran SR (2018) J Ind Eng Chem 62:1

    CAS  Google Scholar 

  6. Habibi-Yangjeh A, Mousavi M (2018) Adv Powder Technol 29:1379

    CAS  Google Scholar 

  7. Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Seifzadeh D (2018) J Taiwan Inst Chem Eng 87:98

    CAS  Google Scholar 

  8. Habibi-Yangjeh A, Mousavi M, Nakata K (2019) J Photochem Photobiol A Chem 368:120

    CAS  Google Scholar 

  9. Pirhashemi M, Habibi-Yangjeh A (2018) J Photochem Photobiol A Chem 363:31

    CAS  Google Scholar 

  10. Feizpoor S, Habibi-Yangjeh A (2018) J Colloid Interface Sci 524:325

    CAS  PubMed  Google Scholar 

  11. Lin SJ, Du WT, Tong LG et al (2019) Chem Res Chin Univ 35:120

    CAS  Google Scholar 

  12. Patiphatpanya P, Ekthammathat N, Phuruangrat A et al (2018) Russ J Phys Chem A 92:2289

    Google Scholar 

  13. Hu JQ, He HC, Li L et al (2019) Chem Commun 55:4777

    CAS  Google Scholar 

  14. Kweku DW, Beryl AB, Masso Kody CS et al (2019) Catal Sci Technol 9:546

    Google Scholar 

  15. Basith MA, Yesmin N, Hossain R (2018) RSC Adv 8:29613

    CAS  Google Scholar 

  16. Ni ZL, Sun YJ, Zhang YX et al (2016) Appl Surf Sci 365:314

    CAS  Google Scholar 

  17. Zhang XH, Gai WZ (2017) J Mater Sci: Mater Electron 28:9777

    CAS  Google Scholar 

  18. Yu HB, Jiang LB, Wang H et al (2019) Small. https://doi.org/10.1002/smll.201901008

    Article  PubMed  Google Scholar 

  19. Zhang P, Yi YN, Yu CX et al (2018) J Mater Sci: Mater Electron 29:8617

    CAS  Google Scholar 

  20. Jia YL, Lin YH, Ma Y et al (2018) Mater Lett 234:83

    Google Scholar 

  21. Yang ZX, Shen M, Dai K et al (2018) Appl Surf Sci 430:505

    CAS  Google Scholar 

  22. Jia YL, Ma Y, Tang JZ et al (2018) Dalton Trans 47:5542

    CAS  PubMed  Google Scholar 

  23. Xing YX, Gao XC, Ji GF et al (2019) Appl Surf Sci 465:369

    CAS  Google Scholar 

  24. Hu TP, Yang Y, Dai K et al (2018) Appl Surf Sci 456:473

    CAS  Google Scholar 

  25. Liu HJ, Du CW, Bai HK et al (2018) J Mater Sci 53:10743

    CAS  Google Scholar 

  26. Jaffari ZH, Lam SM, Sin JC et al (2019) Environ Sci Pollut Res 26:10204

    CAS  Google Scholar 

  27. Chen W, Wang YH, Shangguan WF (2019) Mater Lett 238:74

    CAS  Google Scholar 

  28. Zhang XH (2014) Catal Lett 144:1253

    CAS  Google Scholar 

  29. Xue SS, He HB, Fan QZ et al (2017) J Environ Sci 60:70

    Google Scholar 

  30. Jia H, Liu ZL, Liao LM et al (2018) J Phys Chem C 122:9606

    CAS  Google Scholar 

  31. Wang W, Ding MY, Lu CH et al (2014) Appl Catal B 144:379

    CAS  Google Scholar 

  32. Wang M, You MY, Guo PY et al (2017) J Alloy Compd 728:739

    CAS  Google Scholar 

  33. Chen P, Zhong Z, Jia H et al (2016) RSC Adv 6:7391

    CAS  Google Scholar 

  34. Zhang FJ, Sun R, Li RS et al (2018) J Sol Gel Sci Technol 86:640

    CAS  Google Scholar 

  35. Alemi AA, Kashfi R, Shabani B et al (2014) J Mol Catal A: Chem 392:290

    CAS  Google Scholar 

  36. Ri CN, Kim SG, Ju KS et al (2018) RSC Adv 8:5433

    CAS  Google Scholar 

  37. Li HD, Li WJ, Liu XT et al (2019) Appl Surf Sci 463:556

    CAS  Google Scholar 

  38. Sun YJ, Wang H, Xing Q et al (2019) Chin J Catal 40:647

    CAS  Google Scholar 

  39. Chang CJ, Huang KL, Chen JK et al (2015) J Taiwan Inst Chem Eng 56:82

    Google Scholar 

  40. Wang M, Zheng HY, Liu J et al (2015) Mater Sci Semicond Process 30:307

    CAS  Google Scholar 

  41. Li HH, Liu CY, Li KW et al (2008) J Mater Sci 43:7026

    CAS  Google Scholar 

  42. Zhou F, Shi R, Zhu YF (2011) J Mol Catal A: Chem 340:77

    CAS  Google Scholar 

  43. Zhang LW, Xu TG, Zhao X et al (2010) Appl Catal B Environ 98:138

    CAS  Google Scholar 

  44. Zhang XH, Zhao JG, Guo LJ (2014) J Alloy Compd 582:617

    CAS  Google Scholar 

  45. Jiang ZY, Liu YY, Jing T et al (2016) J Phys Chem C 120:2058

    CAS  Google Scholar 

  46. Rahmani M, Sedaghat T (2019) J Inorg Organomet Polym 29:220

    CAS  Google Scholar 

  47. Regmi C, Kshetri YK, Kim TH et al (2017) Appl Surf Sci 413:253

    CAS  Google Scholar 

  48. Shang YR, Cui YP, Shi RX et al (2019) Mat Sci Semicond Process 89:240

    CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support of the Henan Provincial Department of Science and Technology Research Project (Nos. 162102210303, 182102311047) and the Key Program of Colleges and Universities in Henan Province (No. 18A150039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, H., Jiang, H. et al. Hydrothermal Synthesis and Characterization of Ce3+ Doped Bi2MoO6 for Water Treatment. Catal Lett 150, 159–169 (2020). https://doi.org/10.1007/s10562-019-02924-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02924-2

Keywords

Navigation