Skip to main content
Log in

A Comprehensive Review Covering Conventional and Structured Catalysis for Methanol to Propylene Conversion

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The conversion of methanol to propylene is a value-added process and has gained extreme significance because of high demand for propylene in the production of petrochemicals. The demand for propylene is increasing due to increasing usage of polypropylene. During the last two decades, propylene demand growth has far overtaken ethylene demand growth and it is predicted to be more than double in the next 20 years. The Dalian Institute of Chemical Physics has been working for the last three decades in the R&D of the methanol to olefins reaction and have developed MTP technology. The catalytic materials used in methanol to propylene conversion include SAPO-34 (small-pore molecular sieves), ZSM-5 (medium-pore zeolites) and its modified forms. Limited research has also been done using large pore zeolites such as mordenite and beta. High-silica EU-1 zeolite has been found as an efficient catalyst for MTP conversion. The use of SAPO-18, ZSM-23 and CON-type zeolite for MTP reaction has also been discussed. Methanol to propylene research has been carried using structured catalysts including ceramic based honeycomb or monolith and silicon carbide foam. The major difference in process design between SAPO-34 and H-ZSM-5 is that the SAPO-34 is used in fluidized bed process while H-ZSM-5 catalyst is used in fixed bed process. SAPO-34 is a selective catalyst for olefins but deactivates fast and thus requires frequent regeneration. The H-ZSM-5 is less selective for olefins but shows less deactivation and thus quite stable. A number of structured supports such as monolith, foam, and mesh have been researched for coating with the active zeolite based catalysts. The structured catalysts have the advantage to reduce the diffusional limitations of pellet catalyst system and have exhibited excellent results in terms of activity and selectivity for olefins as well as in reducing aromatics formation. The results obtained in our research using zeolite coated structured catalysts have shown significant increase in propylene selectivity. The significant findings of our work has been published and patented with US Patent and Trademark Office (USPTO).

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Park JW, Seo G (2009) Appl Catal A 356:180–188

    CAS  Google Scholar 

  2. Tian P, Wei Y, Ye M, Liu Z (2015) ACS Catal 5:1922–1938

    CAS  Google Scholar 

  3. Liu J, Zhang CX, Shen ZH, Hua WM, Tang Y, Shen W, Yue YH, Xu HL (2009) Catal Commun 10:1506–1509

    CAS  Google Scholar 

  4. Song ZX, Takahashi A, Nakamura I, Fujitani T (2010) Appl Catal A 384:201–205

    CAS  Google Scholar 

  5. Wu WZ, Guo WY, Xiao WD, Luo M (2011) Chem Eng Sci 66:4722–4732

    CAS  Google Scholar 

  6. Zhu QJ, Kondo JN, Setoyama T, Yamaguchi M, Domen K, Tatsumi T (2008) Chem Commun 0:5164–5166

    CAS  Google Scholar 

  7. Jiang GY, Zhang L, Zhao Z, Zhou XY, Duan AJ, Xu CM, Gao JS (2008) Appl Catal A 340:176–182

    CAS  Google Scholar 

  8. Galadima A, Muraza O (2015) Ind Eng Chem Res 54:4891–4905

    CAS  Google Scholar 

  9. Hirota Y, Murata K, Miyamoto M, Egashira Y, Nishiyama N (2010) Catal Lett 140:22–26

    CAS  Google Scholar 

  10. Shalmani FM, Halladj R, Askari S (2012) Powder Technol 221(1):395–402

    CAS  Google Scholar 

  11. Razavian M, Halladj R, Askari S (2011) Rev Adv Mater Sci 29:83–99

    CAS  Google Scholar 

  12. Askari S, Halladj R, Sohrabi M (2012) Microporous Mesoporous Mater 163:334

    CAS  Google Scholar 

  13. Sun QM, Wang N, Xi DY, Yang M, Yu JH (2014) Chem Commun 50:6502–6505

    CAS  Google Scholar 

  14. Jianqing L, Zhuo L, Han D, Wu J (2014) Powder Technol 262:177–182

    Google Scholar 

  15. Lee YJ, Baek SC, Jun KW (2007) Appl Catal A 329:130–136

    CAS  Google Scholar 

  16. Xing AH, Wang L, Shi YL (2014) Energy Fuels 28:3339–3344

    CAS  Google Scholar 

  17. Cui XY, Wang JJ, Meng P (2018) Chin J Inorg Chem 34(2):300–308

    CAS  Google Scholar 

  18. Guo L, Zhu W, Miao P (2018) Ind Eng Chem Res 57(31):10398–10402

    CAS  Google Scholar 

  19. Salmasi M, Shohreh F, Ali TN (2011) J Ind Eng Chem 17:755–761

    CAS  Google Scholar 

  20. Erfan A, Haghighi M, Pazhohniya Z, Aghamohammadi S (2016) Microporous Mesoporous Mater 226:331–343

    Google Scholar 

  21. Masoumeh GA, Ranjbar PR, Rashidi A (2017) Reac Kinet Mech Catal 122(2):1265–1279

    Google Scholar 

  22. Sadeghpour P, Haghighi M (2018) Asia-Pacific J Chem Eng 13(1):2163

    Google Scholar 

  23. Mirza K, Ghadiri M, Haghighi M (2018) Microporous Mesoporous Mater 260:155–165

    CAS  Google Scholar 

  24. Salih HA, Oki M, Abussaud B (2018) Ind Eng Chem Res 57(19):6639–6646

    CAS  Google Scholar 

  25. Akhoundzadeh H, Taghizadeh M, Pajaie HSH (2018) Particuology 40:113–122

    CAS  Google Scholar 

  26. Xu Z, Li J, Qian W, Ma H, Zhang H, Ying W (2017) RSC Adv 7:54866–54875

    CAS  Google Scholar 

  27. Aghaei E, Haghighi MJ (2015) Porous Mater 22(1):187–200

    CAS  Google Scholar 

  28. Eslami AA, Haghighi M, Sadeghpour P (2017) Powder Technol 310:187–200

    CAS  Google Scholar 

  29. Hajimirzaee S, Ainte M, Soltani B, Behbahani RM, Leeke GA, Wood J (2015) Chem Eng Res Des 93:541–553

    CAS  Google Scholar 

  30. Lee KY, Lee HK, Ihm SK (2010) Topics Catal 53:247–253

    CAS  Google Scholar 

  31. Chen H, Yaquan W, Chao S, Xiao W, Cui W (2018) Catal Commun 112:10–14

    CAS  Google Scholar 

  32. Li J, Liu M, Guo X, Dai C, Song C (2018) J Energy Chem 27(4):1225–1230

    Google Scholar 

  33. Rostamizadeh M, Taeb A (2016) Synth React Inorg, Met-Org, Nano-Met Chem 46(5):665–671

    CAS  Google Scholar 

  34. Rostamizadeh M, Yaripour F, Hazrati H (2018) J Porous Mater 25(5):1287–1299

    CAS  Google Scholar 

  35. Li J, Liu M, Guo X, Zeng S, Xu S, Wei Y, Liu Z, Song C (2018) Ind Eng Chem Res 57:15375–15384

    CAS  Google Scholar 

  36. Si H, Shan J, Qing Z, Wang Y, Liu Y, Gong Y, Wu Z, Dou T (2012) Appl Catal A 445–446:215–220

    Google Scholar 

  37. Kim Y, Kim JC, Jo C, Kim TW, Kim CU, Jeong SY, Chae HJ (2016) Microporous Mesoporous Mater 222:1–8

    CAS  Google Scholar 

  38. Si H, Zhang Q, Xia Z, Gong YJ, Xu J, Deng F, Dou T (2012) Acta Phys Chim Sin 28:2705–2712

    Google Scholar 

  39. Yao M, Hu S, Wang J, Dou T, Wu YP (2012) Acta Phys Chim Sin 28:2122–2128

    CAS  Google Scholar 

  40. Hadi N, Alizadeh R, Niaei A (2017) J Ind Eng Chem 54:82–97

    CAS  Google Scholar 

  41. Mei CS, Wen PY, Liu ZC, Liu HX, Wang YD, Yang WM, Xie ZK, Hua WM, Gao Z (2008) J Catal 258:243–249

    CAS  Google Scholar 

  42. Sun C, Junming D, Jian L, Yisu Y, Nan R, Shen S, Hualong X, Yi T (2010) Chem Commun 46:2671–2673

    CAS  Google Scholar 

  43. Feng R, Wang X, Lin J (2018) Microporous Mesoporous Mater 270:57–66

    CAS  Google Scholar 

  44. Feng R, Yan X, Hu X, Yan Z, Lin J, Li Z, Hou K, Rood MJ (2018) Catal Commun 109:1–5

    CAS  Google Scholar 

  45. Zhuang S, Hu Z, Huang L, Qin F, Huang Z, Sun C, Shen W, Xu H (2018) Catal Commun 114:28–32

    CAS  Google Scholar 

  46. Li J, Ma H, Chen Y, Xu Z, Li C, Ying W (2018) Chem Commun 54(47):6032–6035

    CAS  Google Scholar 

  47. Rahmani M, Taghizadeh M (2017) Reac Kinet Mech Catal 122(1):409–432

    CAS  Google Scholar 

  48. Lee YJ, Kim YW, Viswanadham N, Jun KW, Bae JW (2010) Appl Catal A 374:18–25

    CAS  Google Scholar 

  49. Moreno-Piraján JC, Garcia-Cuello VS, Giraldo L (2010) J Thermodyn Catal 1:101

    Google Scholar 

  50. Zhang SL, Zhang LL, Wang WG, Min YY, Tong M, Yu S, Yan-Jun G, Tao D (2014) Acta Phys Chim Sin 30:535–543

    CAS  Google Scholar 

  51. Aina X, Hongfang M, Haitao Z, Weiyong Y, Dingye F (2013) World Acad Sci Eng Technol 7:28

    Google Scholar 

  52. Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A (2015) Microporous Mesoporous Mater 203:41–53

    CAS  Google Scholar 

  53. Yang Y, Chao S, Junming D, Yinhong Y, Weiming H, Chunlei Z, Wei S, Hualong X (2012) Catal Commun 24:44–47

    Google Scholar 

  54. Vu DV, Hirota Y, Nishiyama N, Egashira Y, Ueyama K (2010) J Jpn Pet Inst 53:232–238

    CAS  Google Scholar 

  55. Wang L, Wang Z, Liangcheng AN, Yong X, Luo C (2013) Acta Pet Sinica Pet Process 29:597–604

    Google Scholar 

  56. Zhao X, Hong Y, Wang L, Fan D, Yan N, Liu X, Tian P, Guo X, Liu Z (2018) Chin J Catal 39(8):1418–1426

    CAS  Google Scholar 

  57. Jiang X, Su X, Bai X, Li Y, Yang L, Zhang K, Zhang Y, Liu Y, Wu W (2018) Micro Meso Mat 263:243–250

    CAS  Google Scholar 

  58. Lee KY, Lee SW, Ihm SK (2014) Ind Eng Chem Res 53:10072–10079

    CAS  Google Scholar 

  59. Jin Y, Asaoka S, Zhang S, Li P, Zhao S (2013) Fuel Proc Technol 115:34–41

    CAS  Google Scholar 

  60. Wei RC, Li CY, Yang CH, Shan HH (2011) J Natural Gas Chemistry 20:261–265

    CAS  Google Scholar 

  61. Mao DS, Guo QS, Meng T (2010) Acta Phys Chim Sin 26:2242–2248

    CAS  Google Scholar 

  62. Goetze J, Weckhuysen BM (2018) Catal Sci Technol 8(6):1632–1644

    CAS  Google Scholar 

  63. Gong T, Zhang X, Bai T, Zhang QQ, Tao L, Qi M, Duan C (2012) Ind Eng Chem Res 51:13589–13598

    CAS  Google Scholar 

  64. Zhang H, Liu H, Jiang Y, Chang X, Yuan K, Wang B, Guo Y, Meng S (2014) Adv Mater Res 13:476–480

    Google Scholar 

  65. Hadi N, Niaei A, Nabavi SR, Farzi A, Shirazi MN (2014) Chem Biochem Eng Q 28:53–63

    CAS  Google Scholar 

  66. Zhang SH, Zhang BL, Gao ZX, Han YZ (2010) Reac Kinet Mech Catal 99:447–453

    CAS  Google Scholar 

  67. Nieskens DLS, Ferrar D, Liu Y, de Putter SA (2014) Ind Eng Chem Res 53:10892–10898

    CAS  Google Scholar 

  68. Rostamizadeh M, Taeb A (2015) J Ind Eng Chem 27:297–306

    CAS  Google Scholar 

  69. Hadi N, Niaei A, Nabavi SR (2016) J Taiwan Inst Chem Eng 59:173–185

    CAS  Google Scholar 

  70. Sun C, Yang YS, Du JM, Qin F, Liu ZP, Shen W, Xu HL, Tang Y (2012) Chem Commun 48:5787–5789

    CAS  Google Scholar 

  71. Papari S, Mohammadrezaei A, Asadi M, Golhosseini R, Naderifar A (2011) Catal Commun 16:150–154

    CAS  Google Scholar 

  72. Zhang HR, Ning ZX, Liu H (2017) RSC Adv 7(27):16602–16607

    CAS  Google Scholar 

  73. Zhang HR, Ning ZX, Shang JP (2017) Microporous Mesoporous Mater 248:173–178

    CAS  Google Scholar 

  74. Hadi N, Niaei A, Alizadeh R (2018) C R Chim 21(5):523–540

    CAS  Google Scholar 

  75. Shareh FB, Kazemeini M, Asadi M, Fattahi M (2014) Pet Sci Technol 32:1349–1356

    CAS  Google Scholar 

  76. Si H, Yanjun G, Qinghu X, Xiaoling L, Qing Z, Lanlan Z, Tao D (2012) Catal Commun 28:95–99

    Google Scholar 

  77. Hussain ST, Mazhar M, Gul S, Chuang KT, Sanger AR (2006) Bull Korean Chem Soc 27:1844–1850

    CAS  Google Scholar 

  78. Meng X, Chen C, Liu J, Zhang Q, Li C, Cui Q (2016) Appl Petrochem Res 6:41–47

    CAS  PubMed  Google Scholar 

  79. Taniguchi T, Nakasaka Y, Yoneta K (2016) Catal Lett 146(3):666–676

    CAS  Google Scholar 

  80. Rashidi H, Shariati A, Khosravi-Nikou MR (2016) Korean J Chem Eng 33(8):2319–2324

    CAS  Google Scholar 

  81. Yoshioka M, Yokoi T, Tatsumi T (2015) ACS Catal 57:4268–4275

    Google Scholar 

  82. Molino KA, Łukaszuk D, Rojo-Gama KP, Lillerud U, Olsbye S, Bordiga SS, Beato P (2017) Chem Commun 53:6816

    CAS  Google Scholar 

  83. Ivanova S, Louis B, Madani B, Tessonnier JP, Ledoux MJ, Pham-Huu C (2007) J Phys Chem 111(11):4368–4374

    CAS  Google Scholar 

  84. Louis B, Ocampo F, Yun HS, Tessonnier JP, Pereira MM (2010) Chem Eng J 161(3):397–402

    CAS  Google Scholar 

  85. Iglesia O, Sebastián V, Mallada R, Nikolaidis G, Coronas J, Kolb G, Zapf R, Hessel V, Santamaría J (2007) Catal Today 125:2–10

    Google Scholar 

  86. Yang GH, Zhang XF, Liu SQ, Yeung KL, Wang JQ (2007) J Phys Chem Solids 68:26–31

    CAS  Google Scholar 

  87. Scheffler F (2008) Ceram Forum Int 85(3):E45–E50

    CAS  Google Scholar 

  88. Yao JF, Zeng CF, Zhang LX, Xu NP (2008) Mater Chem Phys 112(2):637–640

    CAS  Google Scholar 

  89. Perdana I, Creaser D, Bendiyasa IM, Tyoso BW (2007) Chem Eng Sci 62:3882–3893

    CAS  Google Scholar 

  90. Jiao Y, Jiang C, Yang Z, Zhang J (2012) Microporous Mesoporous Mater 162:152–158

    CAS  Google Scholar 

  91. Zampieri A, Kullmann S, Selvam T, Bauer J, Schwieger W, Sieber H, Fey T, Greil P (2006) Microporous Mesoporous Mater 90:162–174

    CAS  Google Scholar 

  92. Lacroix M, Nguyen P, Schweich D, Pham-Huu C, Savin-Poncet S, Edouard D (2007) Chem Eng Sci 62:3259–3267

    CAS  Google Scholar 

  93. Betke U, Lieb A (2018) Adv Eng Mater 20:1800252

    Google Scholar 

  94. Ivanova S, Lebrun C, Vanhaecke E, Pham-Huu C, Louis B (2009) J Catal 265:1–7

    CAS  Google Scholar 

  95. Yilai J, Chunhai J, Zhenming Y, Jian L, Jinsong Z (2013) Microporous Mesoporous Mater 181:201–207

    Google Scholar 

  96. Yilai J, Xiaodan Y, Chunhai J, Chong T, Zhenming Y, Jinsong Z (2015) J Catal 332:70–76

    Google Scholar 

  97. Jiao Y, Fan X, Perdjon M (2017) Appl Catal A 545:104–112

    CAS  Google Scholar 

  98. Jiao Y, Xu S, Jiang C (2018) Appl Catal A 559:1–9

    CAS  Google Scholar 

  99. Patcas FC (2005) J Catal 231:194–200

    CAS  Google Scholar 

  100. Wang XY, Wen M, Wang CZ, Ding J, Sun Y, Liu Y, Lu Y (2014) Chem Commun 50:6343–6345

    CAS  Google Scholar 

  101. Guo W, Wu W, Luo X, Man X (2013) Fuel Process Technol 108:133–138

    CAS  Google Scholar 

  102. Guo WY, Xiao WD, Luo M (2012) Chem Eng J 207:734–745

    Google Scholar 

  103. Lee YJ, Kim YW, Jun KW, Viswanadham N, Bae JW, Park HS (2009) Catal Lett 129:408–415

    CAS  Google Scholar 

  104. Ding J, Zhang Z, Lupeng H, Chunzheng W, Pengjing C, Guofeng Z, Ye L, Yong L (2016) RSC Adv 6(10):1039

    Google Scholar 

  105. Ding J, Yingshuai J, Pengjing C, Guofeng Z, Ye L, Yong L (2018) Microporous Mesoporous Mater 261:1–8

    CAS  Google Scholar 

  106. Wen M, Wang X, Han L, Ding J, Sun Y, Liu Y, Lu Y (2015) Micro Meso Mat 206:8–16

    CAS  Google Scholar 

  107. Wen M, Ding J, Wang C (2016) Microporous Mesoporous Mater 221:187–196

    CAS  Google Scholar 

  108. Ding J, Chen P, Guofeng Z (2018) J Catal 360:40–50

    CAS  Google Scholar 

  109. Ding J, Songyu F, Pengjing C, Tao D, Ye L, Yong L (2017) Catal Sci Tech 7(10):2087–2100

    CAS  Google Scholar 

  110. Lefevere J, Mullens S, Meynen S, Noyen JV (2014) Chem Pap 68(9):143–1153

    Google Scholar 

  111. Lefevere J, Gysen M, Mullens S, Meynen Noyen JV (2013) Catal Today 216:18–23

    CAS  Google Scholar 

  112. Lønstad BF, Chavan S, Olsbye U, Boltz M, Ocampo F, Louis B (2012) Appl Catal A 447:178–185

    Google Scholar 

  113. Ali MA, Al-Baghli NA, Nisar M, Malaibari ZO, Abutaleb A, Ahmed S (2019) Energy Fuels 33(2):1458–1466

    CAS  Google Scholar 

  114. Ali MA, Ahmed S (2017) US Patent 9845271

  115. Ali MA, Ahmed S (2017) US Patent 9738570

  116. Ali MA, Ahmed S (2017) US Patent 9682367

  117. Ali MA, Ahmed S (2017) US Patent 9675971

Download references

Acknowledgements

The authors would like to thank Saudi Basic Industries Corporation (SABIC) and Jazan University for financially supporting this project. The project was funded through SABIC Grant No. 3/2018/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ashraf Ali.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.A., Ahmed, S., Al-Baghli, N. et al. A Comprehensive Review Covering Conventional and Structured Catalysis for Methanol to Propylene Conversion. Catal Lett 149, 3395–3424 (2019). https://doi.org/10.1007/s10562-019-02914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02914-4

Keywords

Navigation