Skip to main content

Advertisement

Log in

Fischer-Trospch Synthesis on Ordered Mesoporous Cobalt-Based Catalysts with Compact Multichannel Fixed-Bed Reactor Application: A Review

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

CO hydrogenation to hydrocarbons through Fischer–Tropsch synthesis (FTS) reaction is one of the promising chemical processes, which can convert alternative feedstocks such as natural gas or biomass into synthetic fuels. The FTS reaction has received many attentions due to a limited petroleum resource with an increased demand for using alternative carbon sources such as stranded gas or shale gas. Some proper synthetic methods of an effective FTS catalyst having a larger active metal surface area and a lower deactivation rate are the most important issues for a long-term operation. Therefore, some ordered mesoporous materials (OMM) have been widely investigated in the field of CO hydrogenation using some heterogeneous catalysts. The present brief review paper summarized the various preparation methods of the ordered mesoporous materials for the possible applications of FTS reaction with a lower deactivation rate and a higher catalytic performance. The applications of the ordered mesoporous cobalt oxides for FTS reaction are briefly introduced and the ways to improve a structural stability even under reductive CO hydrogenation conditions by using efficient pillaring materials as well as by preparing mixed metal oxides. A higher catalytic activity of the ordered mesoporous cobalt oxide was also verified in a multi-channel fixed-bed compact reactor having the intersected interlayers of micro-channel heat exchanger. The thermal stability of ordered mesoporous cobalt-based catalysts was mainly affected by a structural stability which can easily remove the heavy hydrocarbons from the inner surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ali S, Zabidi NAM, Subbarao D (2011) Chem Cent J 5:68–74

    Article  CAS  Google Scholar 

  2. Jin M, Park JN, Shon JK, Kim JH, Li Z, Park YK, Kim JM (2012) Catal Today 185:183–190

    Article  CAS  Google Scholar 

  3. Li L, Wang Y, Wang Y, Han Y, Qiu F, Liu G, Yan C, Song D, Jiao L, Yuan H (2011) J Power Sources 196:10758–10761

    Article  CAS  Google Scholar 

  4. Xia Y, Dai H, Jiang H, Zhang L (2010) Catal Commun 11:1171–1175

    Article  CAS  Google Scholar 

  5. Sun S, Gao Q, Wang H, Zhu J, Guo H (2010) Appl Catal B Environ 97:284–291

    Article  CAS  Google Scholar 

  6. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  7. Ren Y, Jiao F, Bruce PG (2009) Micropor Mesopor Mater 121:90–94

    Article  CAS  Google Scholar 

  8. Shu P, Ruan J, Gao C, Li H, Che S (2009) Micropor Mesopor Mater 123:314–323

    Article  CAS  Google Scholar 

  9. Yanangisawa T, Shimizu T, Kuroda K, Kato CB (1990) Chem Soc Jpn 63:988–992

    Article  Google Scholar 

  10. Inagaki S, Fukushima Y, Kuroda K (1993) Chem Commun 680–682

  11. Zhao D, Wan Y, Zhou W (2012) Ordered Mesoporous Mater Wiley VCH 361–363

  12. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712

    Article  CAS  Google Scholar 

  13. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, C.T.W. Chu, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834–10843

    Article  CAS  Google Scholar 

  14. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  15. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  16. Ishikawa T, Matsuda M, Yasukawa A, Kandori K, Inagaki S, Fukushima T, Kondo S (1996) J Chem Soc Faraday Trans 92:1985–1989

    Article  CAS  Google Scholar 

  17. Kimura T, Kamata T, Fuziwara M, Takano Y, Kaneda M, Sakamoto Y, Terasaki O, Sugahara Y, Kuroda K (2000) Angew Chem Int Ed 39:3855–3859

    Article  CAS  Google Scholar 

  18. Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8:1147–1160

    Article  CAS  Google Scholar 

  19. Zhao D, Huo Q, Feng J, Kim J, Han Y, Stucky GD (1999) Chem Mater 11:2668–2672

    Article  CAS  Google Scholar 

  20. Blin JL, Leonard A, Su BL (2001) Chem Mater 13:3542–3553

    Article  CAS  Google Scholar 

  21. Garcia-Bennett AE, Terasaki O, Che S, Tatsumi T (2004) Chem Mater 16:813–821

    Article  CAS  Google Scholar 

  22. Huo Q, Leon R, Petroff PM, Stucky GD (1995) Science 268:1324–1327

    Article  CAS  Google Scholar 

  23. Sakamoto Y, Diaz I, Terasaki O, Zhao D, Perez-Pariente J, Kim JM, Stucky GD (2002) J Phys Chem B 106:3118–3123

    Article  CAS  Google Scholar 

  24. Han Y, Zhang D, Chng LL, Sun J, Zhao L, Zou X, Ying JY (2009) Nat Chem 1:123–127

    Article  CAS  Google Scholar 

  25. Kim JM, Kim SK, Ryoo R (1998) Chem Commun 259–260

  26. Liu X, Tian B, Yu C, Gao F, Xie S, Tu B, Che R, Peng LM, Zhao D (2002) Angew Chem Int Ed 41:3876–3878

    Article  CAS  Google Scholar 

  27. Kleitz F, Choi SH, Ryoo R (2003) Chem Commun 2136–2137

  28. Che S, Sakamoto Y, Terasaki O, Tatsumi T (2001) Chem Mater 13:2237–2239

    Article  CAS  Google Scholar 

  29. Sakamoto Y, Kaneda M, Terasaki O, Zhao DY, Kim JM, Stucky GD, Shin HJ, Ryoo R (2000) Nature 408:449–453

    Article  CAS  Google Scholar 

  30. Yu C, Yu Y, Miao L, Zhao D (2001) Micropor Mesopor Mater 44–45:65–72

    Article  Google Scholar 

  31. Shen S, Li Y, Zhang Z, Fan J, Tu B, Zhou W, Zhao D (2002) Chem Commun 2212–2213

  32. Fan J, Yu C, Gao F, Lei J, Tian B, Wang L, Luo Q, Tu B, Zhou W, Zhao D (2003) Angew Chem Int Ed 42:3146–3150

    Article  CAS  Google Scholar 

  33. Kleitz F, Liu D, Anilkumar GM, Park IS, Solovyov LA, Shmakov AN, Ryoo R (2003) J Phys Chem B 107:14296–14300

    Article  CAS  Google Scholar 

  34. Garcia-Bennett AE, Miyasaka K (2004) O Terasaki Chem Mater 16:3597–3605

    Article  CAS  Google Scholar 

  35. Gao C, Sakamoto Y, Sakamoto K, Terasaki O, Che S (2006) Angew Chem Int Ed 45:4295–4298

    Article  CAS  Google Scholar 

  36. Wan Y, Zhao D (2007) Chem Rev 107:2821–2860

    Article  CAS  Google Scholar 

  37. Roggenbuck J, Koch G, Tiemann M (2006) Chem Mater 18:4151–4156

    Article  CAS  Google Scholar 

  38. Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743–7746

    Article  CAS  Google Scholar 

  39. Tian B, Che S, Liu Z, Liu X, Fan W, Tatsumi T, Terasaki O, Zhao D (2003) Chem Commun 2726–2727

  40. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T (2000) O Terasaki J Am Chem Soc 122:10712–10713

    Article  CAS  Google Scholar 

  41. Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R (2001) Nature 412:169–171

    Article  CAS  Google Scholar 

  42. Che S, Lund K, Tatsumi T, Iijima S, Joo SH, Ryoo R (2003) O Terasaki Angew Chem Int Ed 42:2182–2185

    Article  CAS  Google Scholar 

  43. Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Adv Mater 13:677–681

    Article  CAS  Google Scholar 

  44. Laha SC, Ryoo R (2003) Chem Commun 2138–2139

  45. Yue W, Zhou W (2007) J Mater Chem 17:4947–4952

    Article  CAS  Google Scholar 

  46. Jiao K, Zhang B, Yue B, Ren Y, Liu S, Yan S, Dickinson C, Zhou W, He H (2005) Chem Commun 5618–5620

  47. Yue W, Hill AH, Harrison A, Zhou W (2007) Chem Commun 2518–2520

  48. Roggenbuck J, Tiemann M (2005) J Am Chem Soc 127:1096–1097

    Article  CAS  Google Scholar 

  49. Liu Q, Wang A, Wang X, Zhang T (2006) Chem Mater 18:5153–5155

    Article  CAS  Google Scholar 

  50. Liu Q, Wang A, Xu J, Zhang Y, Wang X, Zhang T (2008) Micropor Mesopor Mater 116:461–468

    Article  CAS  Google Scholar 

  51. Lai X, Li X, Geng W, Tu J, Li J, Qiu S (2007) Angew Chem Int Ed 46:738–741

    Article  CAS  Google Scholar 

  52. Shi Y, Wan Y, Zhao D (2011) Chem Soc Rev 40:3854–3878

    Article  CAS  Google Scholar 

  53. Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Chem Mater 20:682–737

    Article  CAS  Google Scholar 

  54. Gu D, Schuth F (2014) Chem Soc Rev 43:313–344

    Article  CAS  Google Scholar 

  55. Lundberg M, Skarman B, Cesar F, Wallenberg LR (2002) Micropor Mesopor Mater 54:97–103

    Article  CAS  Google Scholar 

  56. Lundberg M, Skarman B, Wallenberg LR (2004) Micropor Mesopor Mater 69:187–195

    Article  CAS  Google Scholar 

  57. Sinha AK, Suzuki K (2005) Angew Chem Int Ed 44:271–273

    Article  CAS  Google Scholar 

  58. Dahal N, Ibarra IA, Humphrey SM (2012) J Mater Chem 22:12675–12681

    Article  CAS  Google Scholar 

  59. Tan Y, Srinivasan S, Choi KS (2005) J Am Chem Soc 127:3596–3604

    Article  CAS  Google Scholar 

  60. Li H, Zhang L, Dai H, He H (2009) Inorg Chem 48:4421–4434

    Article  CAS  Google Scholar 

  61. Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC (2008) J Am Chem Soc 130:3465–3472

    Article  CAS  Google Scholar 

  62. Wu Q, Zhang F, Yang J, Li Q, Tu B, Zhao D (2011) Micropor Mesopor Mater 143:406–412

    Article  CAS  Google Scholar 

  63. Brady RC, Pettit R (1980) J Am Chem Soc 102:6181–6182

    Article  CAS  Google Scholar 

  64. Maitlis PM, Long HC, Quyoum R, Turner ML, Wang ZQ (1996) Chem Commun 1–8

  65. Gaube J, Klein HF (2008) J Mol Catal A Chem 283:60–68

    Article  CAS  Google Scholar 

  66. Lualdi M, Thesis KTH (2012) Stockholm 17–19

  67. Pichler H, Schulz H (1970) Chem Ing Tech 42:1162–1174

    Article  CAS  Google Scholar 

  68. Storch H, Golumbic N, Anderson R (1961) The Fischer–Tropsch and related synthesis. Wiley, New York

    Google Scholar 

  69. http://wiki.gekgasifier.com/w/page/6123715/Gas%20to%20Liquids

  70. Steynberg A, Dry M (2004) Stud Surf Sci Catal 152:1–700

    Article  CAS  Google Scholar 

  71. Woo MH, Cho JM, Jun KW, Lee YJ, Bae JW (2015) ChemCatChem 7:1460–1469

    Article  CAS  Google Scholar 

  72. Ha KS, Jung GI, Woo MH, Jun KW, Bae JW (2013) Appl Catal A Gen 453:358–369

    Article  CAS  Google Scholar 

  73. Park SJ, Bae JW, Jung GI, Ha KS, Jun KW, Lee YJ, Park HG (2012) Appl Catal A Gen 413–414:310–321

    Article  CAS  Google Scholar 

  74. Kwack SH, Park MJ, Bae JW, Park SJ, Ha KS, Jun KW (2011) Fuel Process Technol 92:2264–2271

    Article  CAS  Google Scholar 

  75. Park SJ, Bae JW, Lee YJ, Ha KS, Jun KW, Karandikar P (2011) Catal Commun 12:539–543

    Article  CAS  Google Scholar 

  76. Bae JW, Kim SM, Lee YJ, Lee MJ, Jun KW (2009) Catal Commun 10:1358–1362

    Article  CAS  Google Scholar 

  77. Park SJ, Kim SM, Woo MH, Bae JW, Jun KW, Ha KS (2012) Appl Catal A Gen 419–420:148–155

    Article  CAS  Google Scholar 

  78. Park JY, Lee YJ, Karandikar PR, Jun KW, Bae JW, Ha KS (2011) J Mol Catal A Chem 344:153–160

    Article  CAS  Google Scholar 

  79. Jang IH, Um SH, Lim B, Woo MH, Jun KW, Lee JB, Bae JW (2013) Appl Catal A Gen 450:88–95

    Article  CAS  Google Scholar 

  80. Lee BS, Jang IH, Bae JW, Um SH, Yoo PJ, Park MJ, Lee YC, Jun KW (2012) Catal Surv Asia 16:121–137

    Article  CAS  Google Scholar 

  81. Bae JW, Park SJ, Woo MH, Cheon JY, Ha KS, Jun KW, Lee DH, Jung HM (2011) ChemCatChem 3:1342–1347

    Article  CAS  Google Scholar 

  82. Kwack SH, Bae JW, Park MJ, Kim SM, Ha KS, Jun KW (2011) Fuel 90:1383–1394

    Article  CAS  Google Scholar 

  83. Bae JW, Kim SM, Park SJ, Lee YJ, Ha KS, Jun KW (2010) Catal Commun 11:834–838

    Article  CAS  Google Scholar 

  84. Jung JS, Choi G, Lee JS, Ramesh S, Moon DJ (2015) Catal Today 250:102–114

    Article  CAS  Google Scholar 

  85. Jung JS, Lee JS, Choi G, Ramesh S, Moon DJ (2015) Fuel 149:118–129

    Article  CAS  Google Scholar 

  86. Kang JS, Awate SV, Lee YJ, Kim SJ, Park MJ, Lee SD, Hong SI, Moon DJ (2010) J Nanosci Nanotechnol 10:3700–3704

    Article  CAS  Google Scholar 

  87. Xing C, Shen W, Yang G, Yang R, Lu P, Sun J, Yoneyama Y, Tsubaki N (2014) Catal Commun 55:53–56

    Article  CAS  Google Scholar 

  88. Yang G, Xing C, Hirohama W, Jin Y, Zeng C, Suehiro Y, Wang T, Yoneyama Y, Tsubaki N (2013) Catal Today 215:29–35

    Article  CAS  Google Scholar 

  89. Jin Y, Yang R, Mori Y, Sun J, Taguchi A, Yoneyama Y, Abe T, Tsubaki N (2013) Appl Catal A Gen 456:75–81

    Article  CAS  Google Scholar 

  90. Xing C, Sun J, Yang G, Shen W, Tan L, Zhu P, Wei Q, Li J, Kyodo M, Yang R, Yoneyama Y, Tsubaki N (2015) Fuel Process Technol 136:68–72

    Article  CAS  Google Scholar 

  91. Xing C, Yang G, Wu M, Yang R, Tan L, Zhu P, Wei Q, Li J, Mao J, Yoneyama Y, Tsubaki N (2015) Fuel 148:48–57

    Article  CAS  Google Scholar 

  92. Lu P, Sun J, Zhu P, Abe T, Yang R, Taguchi A, Vitidsant T, Tsubaki N (2015) J Energy Chem 24:637–641

    Article  Google Scholar 

  93. Lin Q, Yang G, Chen Q, Fan R, Yoneyama Y, Wan H, Tsubaki N (2015) ChemCatChem 97 :682–689

    Article  CAS  Google Scholar 

  94. Sun J, Niu W, Taguchi A, Abe T, Yoneyama Y, Tsubaki N (2014) Catal Sci Technol 4:1260–1267

    Article  CAS  Google Scholar 

  95. Phienluphon R, Shi L, Sun J, Niu W, Lu P, Zhu P, Vitidsant T, Yoneyama Y, Chen Q, Tsubaki N (2014) Catal Sci Technol 4:3099–3107

    Article  CAS  Google Scholar 

  96. Shi L, Jin Y, Xing C, Zeng C, Kawabata T, Imai K, Matsuda K, Tan Y, Tsubaki N (2012) Appl Catal A Gen 435–436:217–224

    Article  CAS  Google Scholar 

  97. Shi L, Tao K, Kawabata T, Shimamura T, Zhang XJ, Tsubaki N (2011) ACS Catal 1:1225–1233

    Article  CAS  Google Scholar 

  98. Li J, Yang G, Yoneyama Y, Vitidsant T, Tsubaki N (2016) Fuel 171:159–166

    Article  CAS  Google Scholar 

  99. Bezemer GL, Bitter JH, H.P.C.E. Kuipers, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) J Am Chem Soc 128:3956–3964

    Article  CAS  Google Scholar 

  100. Munnik P, Krans NA, de Jongh PE, de Jong KP (2014) ACS Catal 4:3219–3226

    Article  CAS  Google Scholar 

  101. Munnik P, de Jongh PE, de Jong KP (2014) J Am Chem Soc 136:7333–7340

    Article  CAS  Google Scholar 

  102. Eggenhuisen TM, Munnik P, Talsma H, de Jongh PE, de Jong KP (2013) J Catal 297:306–313

    Article  CAS  Google Scholar 

  103. Eschemann TO, Oenema J, de Jong KP (2016) Catal Today 261:60–66

    Article  CAS  Google Scholar 

  104. Eschemann TO, de Jong KP (2015) ACS Catal 5:3181–3188

    Article  CAS  Google Scholar 

  105. Eschemann TO, Bitter JH, de Jong KP (2014) Catal Today 228:89–95

    Article  CAS  Google Scholar 

  106. Eschemann TO, Lamme WS, Manchester RL, Parmentier TE, Cognigni A, Ronning M, de Jong KP (2015) J Catal 328:130–138

    Article  CAS  Google Scholar 

  107. Pena D, Griboval-Constant A, Lancelot C, Quijada M, Visez N, Stephan O, Lecocq V, Diehl F, Khodakov AY (2014) Catal Today 228:65–76

    Article  CAS  Google Scholar 

  108. Pena D, Griboval-Constant A, Lecocq V, Diehl F, Khodakov AY (2013) Catal Today 215:43–51

    Article  CAS  Google Scholar 

  109. Sadeqzadeh M, Chambrey S, Piche S, Fongarland P, Luck F, Curulla-Ferre D, Schweich D, Bousquet J, Khodakov AY (2013) Catal Today 215:52–59

    Article  CAS  Google Scholar 

  110. Pena D, Griboval-Constant A, Diehl F, Lecocq V, Khodakov AY (2013) ChemCatChem 5:728–731

    Article  CAS  Google Scholar 

  111. Sadeqzadeh M, Chambrey S, Hong J, Fongarland P, Luck F, Curulla-Ferre D, Schweich D, Bousquet J, Khodakov AY (2014) Ind Eng Chem Res 53:6913–6922

    Article  CAS  Google Scholar 

  112. Tsakoumis NE, Johnsen RE, van Beek W, Ronning M, Holmen A (2016) Chem Commun 52:3239–3242

  113. Patanou E, Lillebo AH, Yang J, De. Chen, Holmen A, Blekkan EA (2014) Ind Eng Chem Res 53:1787–1793

    Article  CAS  Google Scholar 

  114. Balonek CM, Lillebo AH, Rane S, Rytter E, Schmidt LD, Holmen A (2010) Catal Lett 138:8–13

    Article  CAS  Google Scholar 

  115. Ronning M, Tsakoumis NE, Voronov A, Johnsen RE, Norby P, van Beek W, Borg O, Rytter E, Holmen A (2010) Catal Today 155:289–295

    Article  CAS  Google Scholar 

  116. Tsakoumis NE, Voronov A, Ronning M, van Beek W, Borg O, Rytter E, Holmen A (2012) J Catal 291:138–148

    Article  CAS  Google Scholar 

  117. Yang J, Chen D, Holmen A (2012) Catal Today 186:99–108

    Article  CAS  Google Scholar 

  118. Qi Y, Yang J, Duan X, Zhu YA, Chen D, Holmen A (2014) Catal Sci Technol 4:3534–3543

    Article  CAS  Google Scholar 

  119. Yang J, Qi Y, Zhu J, Zhu YA, Chen D, Holmen A (2013) J Catal 308:37–49

    Article  CAS  Google Scholar 

  120. Lualdi M, Logdberg S, Boutonnet M, Jaras S (2013) Catal Today 214:25–29

    Article  CAS  Google Scholar 

  121. Lualdi M, Logdberg S, Regali F, Boutonnet M, Jaras S (2011) Top Catal 54:977–985

    Article  CAS  Google Scholar 

  122. Logdberg S, Boutonnet M, Walmsley JC, Jaras S, Holmen A, Blekkan EA (2011) Appl Catal A Gen 393:109–121

    Article  CAS  Google Scholar 

  123. Jung JS, Kim SW, Moon DJ (2012) Catal Today 185:168–174

    Article  CAS  Google Scholar 

  124. Kim DJ, Dunn BC, Cole P, Turpin G, Ernst RD, Pugmire RJ, Kang M, Kim JM, Eyring EM (2005) Chem Commun 1462–1464

  125. Braganca LFFPG, Ojeda M, Fierro JLG, Pais da Silva MI (2012) Appl Catal A Gen 423–424:146–153

    Article  CAS  Google Scholar 

  126. Ghampson IT, Newman C, Kong L, Pier E, Hurley KD, Pollock RA, Walsh BR, Goundie B, Wright J, Wheeler MC, Meulenberg RW, DeSisto WJ, Frederick BG, Austin RN (2010) Appl Catal A Gen 388:57–67

    Article  CAS  Google Scholar 

  127. Bartolini M, Molina J, Alvarez J, Goldwasser M, Almao PP, Zurita MJP (2015) J Power Sources 285:1–11

    Article  CAS  Google Scholar 

  128. Chen S, Wang C, Li J, Zhang Y, Hong J, Wen X, Liu C (2015) Catal Sci Technol 5:4985–4990

    Article  CAS  Google Scholar 

  129. Hao QQ, Zhao YH, Yang HH, Liu ZT, Liu ZW (2012) Energy Fuels 26:6567–6575

    CAS  Google Scholar 

  130. Karandikar PR, Lee YJ, Kwak G, Woo MH, Park SJ, Park HG, Ha KS, Jun KW (2014) J Phys Chem C 118:21975–21985

    Article  CAS  Google Scholar 

  131. Lualdi M, Carlo GD, Logdberg S, Jaras S, Boutonnet M, Parola VL, Liotta LF, Ingo GM, Venezia AM (2012) Appl Catal A Gen 443–444:76–86

    Article  CAS  Google Scholar 

  132. Cho JM, Ahn CI, Pang C, Bae JW (2015) Catal Sci Technol 5:3525–3535

    Article  CAS  Google Scholar 

  133. Ha KS, Kwak G, Jun KW, Hwang J, Lee J (2013) Chem Commun 49:5141–5143

    Article  CAS  Google Scholar 

  134. Karandikar PR, Park JY, Lee YJ, Jun KW, Ha KS, Kwak GJ, Park HG, Cheon JY (2013) ChemCatChem 5:1461–1471

    Article  CAS  Google Scholar 

  135. Koo HM, Han GY, Bae JW (2016) Korean J Chem Eng 33:1565–1570

    Article  CAS  Google Scholar 

  136. Yang Y, Jia L, Hou B, Li D, Wang J, Sun Y (2014) Catal Sci Technol 4 717–728

    Article  CAS  Google Scholar 

  137. Yang Y, Jia L, Hou B, Li D, Wang J, Sun Y (2014) ChemCatChem 6:319–327

    Article  CAS  Google Scholar 

  138. Ahn CI, Koo HM, Jin M, Kim JM, Kim T, Suh Y, Yoon KJ, Bae JW (2014) Micropor Mesopor Mater 188:196–202

    Article  CAS  Google Scholar 

  139. Ahn CI, Koo HM, Jo JM, Roh HS, Lee JB, Lee YJ, Jang EJ, Bae JW (2016) Appl Catal B Environ 180:139–149

    Article  CAS  Google Scholar 

  140. Ahn CI, Bae JW (2016) Catal Today 265:27–35

    Article  CAS  Google Scholar 

  141. Ahn CI, Lee YJ, Um SH, Bae JW (2016) Chem Commun 52:4820–4823

    Article  CAS  Google Scholar 

  142. Koo HM, Tran-Phu T, Yi GR, Shin CH, Chung CH, Bae JW (2016) Catal Sci Technol 6:4221–4231

    Article  CAS  Google Scholar 

  143. Kim TW, Kleitz F, Paul B, Ryoo R (2005) J Am Chem Soc 127:7601–7610

    Article  CAS  Google Scholar 

  144. Krishna R, Sie ST (2000) Fuel Process Technol 64:73–105

    Article  CAS  Google Scholar 

  145. Lu F, Zhang H, Ying W (2010) Petroleum Sci Technol 28:1834–1845

    Article  CAS  Google Scholar 

  146. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New Jersey

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2014R1A1A2A16055557 and NRF-2016M3D3A1A01913253) and by the National Research Council of Science and Technology (NST) through the Degree and Research Center (DRC) Program (2016). The present work was supported by the R&D Center for Valuable Recycling (Global-Top R&D Program) of the Ministry of Environment of Korea (Project No. E616-00140-0602-2). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) with Project Numbers of 20132010201750 of the Ministry of Knowledge Economy (MKE) of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Wook Bae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, CI., Park, Y.M., Cho, J.M. et al. Fischer-Trospch Synthesis on Ordered Mesoporous Cobalt-Based Catalysts with Compact Multichannel Fixed-Bed Reactor Application: A Review. Catal Surv Asia 20, 210–230 (2016). https://doi.org/10.1007/s10563-016-9219-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-016-9219-5

Keywords

Navigation