Skip to main content
Log in

Co-immobilization of Laccase and TEMPO onto Glycidyloxypropyl Functionalized Fibrous Phosphosilicate Nanoparticles for Fixing CO2 into β-Oxopropylcarbamatesin

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

TEMPO or Anchoring 2,2,6,6-tetra-methylpiperidine-1oxyl radical into the nanospaces a fibre of phosphosilicate with laccase compound causes an unheard potent to be producing which called bifunctional nanocatalyst (TEMPO@FPS-laccase). TEMPO@FPS-laccase indicated proper catalytic activity for synthesis of β-oxopropylcarbamates in aqueous medium without any pollutants through a multi component coupling of CO2, amines and propargyl alcohols in moderate condition. Free laccases may not be recovered but can be easily disabled in different environmental conditions. Enzyme immobilization is known as an expanding way to enhance resistor to extreme conditions and stability as well as recycled of laccase.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 3
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huang K, Sun CL, Shi ZJ (2011) Chem Soc Rev 40:2435–2452

    Article  CAS  Google Scholar 

  2. Pinaka A, Vougioukalakis GC (2015) Coord Chem Rev 288:69–97

    Article  CAS  Google Scholar 

  3. Yu D, Teong SP, Zhang Y (2015) Transition metal complex catalyzed carboxylation reactions with CO2. Coord Chem Rev 293–294:279–291

    Article  Google Scholar 

  4. Goeppert A, Czaun M, Jones JP, Surya Prakash GK, Olah GA (2014) Chem Soc Rev 43:7995–8048

    Article  CAS  Google Scholar 

  5. Sasaki Y, Dixneuf PH (1987) J Org Chem 52:4389–4391

    Article  CAS  Google Scholar 

  6. Bruneau C, Dixneuf PH (1987) Tetrahedron Lett 28:2005–2008

    Article  CAS  Google Scholar 

  7. Kim TJ, Kwon KH, Kwon SC, Baeg JO, Shim SC (1990) J Organomet Chem 389:205–217

    Article  CAS  Google Scholar 

  8. Kim HS, Kim JW, Kwon SC, Shim SC, Kim TJ (1997) J Organomet Chem 545:337–344

    Article  Google Scholar 

  9. Li XD, Lang XD, Song QW, Guo YK, He LN (2016) Chin J Org Chem 36:744–751

    Article  CAS  Google Scholar 

  10. Song QW, Liu P, Han LH, Zhang K, He LN (2018) Chin J Chem 36:147–152

    Article  CAS  Google Scholar 

  11. Ca ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M (2011) Adv Synth Catal 353:133–146

    Article  Google Scholar 

  12. Mate DM, Alcalde M (2017) Microb Biotechnol 10:1457–1467

    Article  CAS  Google Scholar 

  13. Chao C, Zhao YF, Guan HJ, Liu GX, Hu ZG, Zhang B (2017) Environ Eng Sci 34:762–770

    Article  CAS  Google Scholar 

  14. Su J, Fu JJ, Wang Q, Silva C (2018) Crit Rev Biotechnol 38:294–307

    Article  CAS  Google Scholar 

  15. Mate DM, Alcalde M (2015) Biotechnol Adv 33:25–40

    Article  CAS  Google Scholar 

  16. Jeon JR, Chang YS (2013) Trends Biotechnol 31:335–341

    Article  CAS  Google Scholar 

  17. Kudanga T, Le Roes-Hill M (2014) Appl Microbiol Biotechnol 98:6525–6542

    Article  CAS  Google Scholar 

  18. Das A, Stahl SS (2017) Angew Chem 56:8892–8897

    Article  CAS  Google Scholar 

  19. Engström K, Johnston EV, Verho O, Gustafson KPJ, Shakeri M, Tai CW, Bäckvall JE (2013) Angew Chem 125:14256–14260

    Article  Google Scholar 

  20. Maity A, Polshettiwar V (2017) ChemSusChem 10:3866–3913

    Article  CAS  Google Scholar 

  21. Polshettiwar V, Cha D, Zhang X, Basset JM (2010) Angew Chem Int Ed 49:9652–9656

    Article  CAS  Google Scholar 

  22. Massiot Ph, Centeno MA, Carrizosa I, Odriozola JA (2001) J Non-Cryst Solids 292:158–166

    Article  CAS  Google Scholar 

  23. Liu HS, Chin TS, Yung SW (1997) Mater Chem Phys 50:1

    Article  CAS  Google Scholar 

  24. Stan M, Vasdilescu A, Moscu S, Zaharescu M (1998) Rev Roum Chim 43:425

    CAS  Google Scholar 

  25. Chakraborty IN, Condrate RA (1985) Phys Chem Glasses 26:68–73

    CAS  Google Scholar 

  26. Kim YK, Tressler RE (1994) J Mater Sci 29:2531–2535

    Article  CAS  Google Scholar 

  27. Lakshminarayana G, Nogami M (2010) Solid State Ionics 181:760–766

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by “Natural Science Foundation of Shandong Province (Grant Nos. ZR201702200464, ZR2019QB013)” and “Science and Technology Development Plan Project of Zaozhuang City (Grant No. 2019GX07)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhu Wang or Seyed Mohsen Sadeghzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Wang, J., Zhang, X. et al. Co-immobilization of Laccase and TEMPO onto Glycidyloxypropyl Functionalized Fibrous Phosphosilicate Nanoparticles for Fixing CO2 into β-Oxopropylcarbamatesin. Catal Lett 149, 3465–3475 (2019). https://doi.org/10.1007/s10562-019-02894-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02894-5

Keywords

Navigation