Skip to main content
Log in

Kinetics of Allyl Alcohol Epoxidation with Hydrogen Peroxide Catalyzed by a TS-1/Al2O3

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The kinetics of oxidation of allyl alcohol to glycidol in the presence of extruded titanium silicalite was investigated. Based on the experimental data obtained, a kinetic model of the process was developed and the activation energies of the target and side reactions, the rate constants and the adsorption equilibrium were determined. Testing of the process of allyl alcohol epoxidation was carried out and the adequacy of the proposed kinetic model was evaluated at the bench laboratory installation of continuous action.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Seiwert J, Leibig D, Kemmer-Jonas U, Bauer M, Perevyazko I, Preis J et al (2016) Hyperbranched polyols via copolymerization of 1,2-butylene oxide and glycidol: comparison of batch synthesis and slow monomer addition. Macromolecules 49(1):38–47

    Article  CAS  Google Scholar 

  2. Wróblewska A, Fajdek A (2010) Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst. J Hazard Mater 179(1):258–265

    Article  CAS  PubMed  Google Scholar 

  3. Sonnati MO, Amigoni S, Taffin de Givenchy EP, Darmanin T, Choulet O, Guittard F (2013) Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chem 15(2):283–306

    Article  CAS  Google Scholar 

  4. Cucciniello R, Pironti C, Capacchione C, Proto A, Di Serio M (2016) Efficient and selective conversion of glycidol to 1,2-propanediol over Pd/C catalyst. Catal Commun 77:98–102

    Article  CAS  Google Scholar 

  5. Rider TH, Hill AJ (1930) Studies of glycidol. I. Preparation from glycerol monochlorohydrin. J Am Chem Soc 52(4):1521–1527

    Article  CAS  Google Scholar 

  6. Gómez-Jiménez-Aberasturi O, Ochoa-Gómez JR, Pesquera-Rodríguez A, Ramírez-López C, Alonso-Vicario A, Torrecilla-Soria J (2010) Solvent-free synthesis of glycerol carbonate and glycidol from 3-chloro-1,2-propanediol and potassium (hydrogen) carbonate. J Chem Technol Biotechnol 85(12):1663–1670

    Article  CAS  Google Scholar 

  7. Cespi D, Cucciniello R, Ricciardi M, Capacchione C, Vassura I, Passarini F et al (2016) A simplified early stage assessment of process intensification: glycidol as a value-added product from epichlorohydrin industry wastes. Green Chem 18(16):4559–4570

    Article  CAS  Google Scholar 

  8. Weissermel K, Arpe H-J (2003) Industrial organic chemistry, 4th edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  9. Kubo M, Nakazawa Y, Takahashi K (1975) Process for preparing glycidol. US patent 3920708

  10. Fisher WC, Linder SM, Pelley RL, Liao H-P (1978) Glycidol process. US patent US4082777

  11. Gade SM, Munshi MK, Chherawalla BM, Rane VH, Kelkar AA (2012) Synthesis of glycidol from glycerol and dimethyl carbonate using ionic liquid as a catalyst. Catal Commun 27:184–188

    Article  CAS  Google Scholar 

  12. Endah YK, Kim MS, Choi J, Jae J, Lee SD, Lee H (2017) Consecutive carbonylation and decarboxylation of glycerol with urea for the synthesis of glycidol via glycerol carbonate. Catal Today 293–294:136–141

    Article  CAS  Google Scholar 

  13. Wang L, Zhou Y, Mi Z (2007) Epoxidation of allyl chloride and hydrogen peroxide over titanium silicalite-1 film on SiO2 pellet support. J Chem Technol Biotechnol 82(4):414–420

    Article  CAS  Google Scholar 

  14. Harvey L, Kennedy E, Dlugogorski BZ, Stockenhuber M (2015) Influence of impurities on the epoxidation of allyl alcohol to glycidol with hydrogen peroxide over titanium silicate TS-1. Appl Catal A 489:241–246

    Article  CAS  Google Scholar 

  15. Přech J (2018) Catalytic performance of advanced titanosilicate selective oxidation catalysts—a review. Catal Rev 60(1):71–131

    Article  CAS  Google Scholar 

  16. Cavani F, Teles JH (2009) Sustainability in catalytic oxidation: an alternative approach or a structural evolution? ChemSusChem 2(6):508–534

    Article  CAS  PubMed  Google Scholar 

  17. Cavani F (2010) Catalytic selective oxidation: the forefront in the challenge for a more sustainable chemical industry. Catal Today 157(1):8–15

    Article  CAS  Google Scholar 

  18. Perego C, Carati A, Ingallina P, Mantegazza MA, Bellussi G (2001) Production of titanium containing molecular sieves and their application in catalysis. Appl Catal A 221(1):63–72

    Article  CAS  Google Scholar 

  19. Hammond C, Padovan D, Tarantino G (2018) Porous metallosilicates for heterogeneous, liquid-phase catalysis: perspectives and pertaining challenges. R Soc Open Sci 5(2):171315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wróblewska A, Ławro E, Milchert E (2006) Technological parameter optimization for epoxidation of methallyl alcohol by hydrogen peroxide over TS-1 catalyst. Ind Eng Chem Res 45(22):7365–7373

    Article  CAS  Google Scholar 

  21. Wróblewska A, Milchert E (2007) Epoxidation of allyl alcohol with hydrogen peroxide over titanium silicalite TS-2 catalyst. J Chem Technol Biotechnol 82(7):681–686

    Article  CAS  Google Scholar 

  22. Wróblewska A, Fajdek A, Wajzberg J, Milchert E (2008) Epoxidation of allyl alcohol to glycidol over titanium-silicalite Ti-beta and Ti-MCM-41 catalysts. J Adv Oxid Technol 105:451–468

    Google Scholar 

  23. Wróblewska A, Fajdek A, Wajzberg J, Milchert E (2009) Epoxidation of allyl alcohol over mesoporous Ti-MCM-41 catalyst. J Hazard Mater 170(1):405–410

    Article  CAS  PubMed  Google Scholar 

  24. Taramasso M, Perego G, Notari B (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US patent 4410501

  25. Kraushaar B, Van Hooff JHC (1988) A new method for the preparation of titanium-silicalite (TS-1). Catal Lett 1(4):81–84

    Article  CAS  Google Scholar 

  26. Gao H, Suo J, Li S (1995) An easy way to prepare titanium silicalite-1 (TS-1). J Chem Soc Chem Commun 8:835

    Article  Google Scholar 

  27. Serrano DP, Uguina MA, Ovejero G, Van Grieken R, Camacho M (1995) Synthesis of TS-1 by wetness impregnation of amorphous SiO2–TiO2 solids prepared by the sol-gel method. Microporous Mater 4(4):273–282

    Article  CAS  Google Scholar 

  28. Uguina MA, Serrano DP, Ovejero G, Van Grieken R, Camacho M (1995) Preparation of TS-1 by wetness impregnation of amorphous SiO2–TiO2 solids: influence of the synthesis variables. Appl Catal A 124(2):391–408

    Article  CAS  Google Scholar 

  29. Gontier S, Tuel A (1996) Synthesis of titanium silicalite-1 using amorphous SiO2 as silicon source. Zeolites 16(2):184–195

    Article  CAS  Google Scholar 

  30. Gang L, Xinwen G, Xiangsheng W, Qi Z, Xinhe B, Xiuwen H et al (1999) Synthesis of titanium silicalites in different template systems and their catalytic performance. Appl Catal A 185(1):11–18

    Article  Google Scholar 

  31. Kim KY, Ahn WS, Park DW, Oh JH, Lee CM, Tai WP (2004) Microwave synthesis of titanium silicalite-1 using solid phase precursors. Bull Korean Chem Soc 25(5):634–638

    Article  CAS  Google Scholar 

  32. Ahn W-S, Lee K-Y (2005) Extensions in the synthesis and catalytic application of titanium silicalite-1. Catal Surv Asia 9(1):51–60

    Article  CAS  Google Scholar 

  33. Chen P, Chen X, Tanaka K, Kita H (2007) A novel and less-expensive preparation of titanium silicalite-1 membrane. Chem Lett 36(8):1078–1079

    Article  CAS  Google Scholar 

  34. Wróblewska A, Milchert E (2004) Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide on TS-1 catalyst. Chem Pap 58(4):247–255

    Google Scholar 

  35. Clerici MG, Bellussi G, Romano U (1991) Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 129(1):159–167

    Article  CAS  Google Scholar 

  36. Danov SM, Sulimov AV, Ovcharov AA, Sulimova AV (2011) Method of producing granular titanium-containing zeolite. RU patent RU2422360

  37. Danov SM, Sulimov AV, Kolesnikov VA, Ovcharov AA (2013) Kinetics of propylene epoxidation with hydrogen peroxide. Kinet Catal 54(2):193–198

    Article  CAS  Google Scholar 

  38. van der Pol AJHP, van Hooff JHC (1992) Parameters affecting the synthesis of titanium silicalite 1. Appl Catal A 92(2):93–111

    Article  Google Scholar 

  39. Keshavaraja A, Ramaswamy V, Soni HS, Ramaswamy AV, Ratnasamy P (1995) Synthesis, characterization, and catalytic properties of micro-mesoporous, amorphous titanosilicate catalysts. J Catal 157(2):501–511

    Article  CAS  Google Scholar 

  40. Li YG, Lee YM, Porter JF (2002) The synthesis and characterization of titanium silicalite-1. J Mater Sci 37(10):1959–1965

    Article  CAS  Google Scholar 

  41. Kafarov VV (1985) Metody kibernetiki v khimii i khimicheskoi tekhnologii (methods of cybernetics in chemistry and chemical engineering). Khimiya, Moscow

    Google Scholar 

  42. Bottino A, Capannelli G, Comite A, Storace S, Di Felice R (2003) Kinetic investigations on the oxidehydrogenation of propane over vanadium supported on γ-Al2O3. Chem Eng J 94(1):11–18

    Article  CAS  Google Scholar 

  43. Sridevi U, Bhaskar Rao BK, Pradhan NC (2001) Kinetics of alkylation of benzene with ethanol on AlCl3-impregnated 13X zeolites. Chem Eng J 83(3):185–189

    Article  CAS  Google Scholar 

  44. Lebedev NN, Manakov MN, Shvets VF (1984) Teoriya khimicheskikh protsessov osnovnogo organicheskogo i neftekhimicheskogo sinteza (theory of chemical processes in basic organic and petrochemical syntheses). Khimiya, Moscow

    Google Scholar 

  45. Sulimov AV, Danov SM, Ovcharova AV, Flid VR, Bruk LG (2017) A kinetic model for the epoxidation of allyl alcohol with hydrogen peroxide on titanium silicate TS-1. Kinet Catal 58(6):673–678

    Article  CAS  Google Scholar 

  46. Luchinskii GP (1971) Khimiya titana (the chemistry of titanium). Khimiya, Moscow

    Google Scholar 

  47. Zhorov YM (1989) Kinetika promyshlennykh organicheskikh reaktsii (kinetics of industrial organic reactions). Khimiya, Moscow

    Google Scholar 

Download references

Acknowledgements

The work is executed at financial support of the Ministry of Education and Science of the Russian Federation (Agreement No. 14.577.21.0093 for a subvention, a unique identifier of applied research (Project) RFMEFI57714X0093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sulimov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulimov, A., Ovcharova, A., Ovcharov, A. et al. Kinetics of Allyl Alcohol Epoxidation with Hydrogen Peroxide Catalyzed by a TS-1/Al2O3. Catal Lett 149, 3076–3086 (2019). https://doi.org/10.1007/s10562-019-02877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02877-6

Keywords

Navigation