Skip to main content
Log in

Methanol Partial Oxidation Over Shaped Silver Nanoparticles Derived from Cubic and Octahedral Ag2O Nanocrystals

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ag-catalyzed methanol partial oxidation is an important industrial catalytic reaction. Herein we report the morphology effect of Ag catalysts on the catalytic activity in methanol partial oxidation. Shaped Ag nanoparticles were prepared by reducing the cubic and octahedral Ag2O nanocrystals under methanol vapor atmosphere. Ag nanoparticles were observed to undergo serious restructuring during methanol partial oxidation, but Ag nanoparticles derived from octahedral Ag2O nanocrystals were found to be more intrinsically active than those derived from cubic Ag2O nanocrystals. Ex situ characterizations demonstrated the more facile formation of active oxygen species on Ag nanoparticles derived from octahedral Ag2O nanocrystals than on Ag nanoparticles derived from cubic Ag2O nanocrystals. Therefore, although undergoing serious restructuring under the harsh reaction conditions of methanol partial oxidation, the original morphology of Ag nanoparticles exerts strong influences on the structure and catalytic activity of restructured Ag nanoparticles. These results demonstrate that strong correlations between original surface structure and restructured surface structure of catalyst nanoparticles even under very harsh reaction conditions and add fundamental understandings of methanol partial oxidation over Ag catalysts.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Reuss G, Disteldorf W, Gamer AO, Hilt A (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  2. Reuss G, Disteldorf W, Grundler O, Hilt A, Ullmann IF, Gerhartz W, Yamamoto YS, Campbell FT, Pfefferkorn R, Rounsaville JF (2000) Ullmanns encyclopedia of industrial chemistry, 5th edn. VCH, Deerfield Beach, p 619

    Google Scholar 

  3. Bazilio CA, Thomas WJ, Ullah U, Hayes KE (1985) The catalytic oxidation of methanol. Proc R Soc London A 399:181–194

    Article  CAS  Google Scholar 

  4. Nagy AJ, Mestl G, Herein D, Weinberg G, Kitzelmann E, Schlögl R (1999) The correlation of subsurface oxygen diffusion with variations of silver morphology in the silver-oxygen system. J Catal 182:417–429

    Article  CAS  Google Scholar 

  5. Herein D, Nagy A, Schubert H, Weinberg G, Kitzelmann E, Schlögl R (1996) The reaction of molecular oxygen with silver at technical catalytic conditions: bulk structural consequences of a gas-solid interface reaction. Z Phys Chem 197:67–96

    Article  CAS  Google Scholar 

  6. Meyer A, Renken A (1990) Sodium compounds as catalysts for methanol dehydrogenation to water-free formaldehyde. Chem Eng Technol 13:145–149

    Article  CAS  Google Scholar 

  7. Waterhouse GIN, Bowmaker GA, Metson JB (2004) Influence of catalyst morphology on the performance of electrolytic silver catalysts for the partial oxidation of methanol to formaldehyde. Appl Catal A 266:257–273

    Article  CAS  Google Scholar 

  8. Ren LP, Dai WL, Yang XL, Xu JH, Cao Y, Li H, Fan K (2005) Direct dehydrogenation of methanol to formaldehyde over pre-treated polycrystalline silver catalyst. Catal Lett 99:83–87

    Article  CAS  Google Scholar 

  9. Broilovski SM, Ternkin ON, Trofimova IV (1985) Partial oxidation of organic compounds: Oxidation of alcohols on metals of copper subgroup. Khimiya, Moscow, p 147

    Google Scholar 

  10. Dai WL, Cao Y, Ren LP, Yang XL, Xu JH, Li HX, He HY, Fan KN (2004) Ag-SiO2-Al2O3 composite as highly active catalyst for the formation of formaldehyde from the partial oxidation of methanol. J Catal 228:80–91

    Article  CAS  Google Scholar 

  11. Dai WL, Li JL, Cao Y, Liu Q, Deng JF (2000) Novel sol-gel-derived Ag/SiO2-Al2O3 catalysts for highly selective oxidation of methanol to formaldehyde. Catal Lett 64:37–40

    Article  CAS  Google Scholar 

  12. Cao Y, Dai WL, Deng JF (1997) The oxidative dehydrogenation of methanol over a novel Ag/SiO2 catalyst. Appl Catal A 158:27–34

    Article  Google Scholar 

  13. Liu Q, Cao Y, Dai WL, Deng JF (1998) The oxidative dehydrogenation of methanol over a novel low-loading Ag/SiO2–TiO2 catalyst. Catal Lett 55:87–91

    Article  CAS  Google Scholar 

  14. Bukhtiyarov VI, Hävecker M, Kaichev VV, Knop-Gericke A, Mayer RW, Schlögl R (2003) Atomic oxygen species on silver: photoelectron spectroscopy and x-ray absorption studies. Phys Rev B 67:235422

    Article  CAS  Google Scholar 

  15. Li WX, Stampfl C, Scheffler M (2003) Subsurface oxygen and surface oxide formation at Ag (111): a density-functional theory investigation. Phys Rev B 67:045408

    Article  CAS  Google Scholar 

  16. Kaichev VV, Bukhtiyarov VI, Hävecker M, Knop-Gericke A, Mayer RW (2003) The nature of electrophilic and nucleophilic oxygen adsorbed on silver. Kinet Catal 44:432–440

    Article  CAS  Google Scholar 

  17. Lefferts L, van Ommen JG, Ross JRH (1986) The oxidative dehydrogenation of methanol to formaldehyde over silver catalysts in relation to the oxygen–silver interaction. Appl Catal 23:385–402

    Article  CAS  Google Scholar 

  18. Lefferts L, van Ommen JG, Ross JRH (1988) The interaction between silver and N2O in relation to the oxidative dehydrogenation of methanol. J Catal 114:303–312

    Article  CAS  Google Scholar 

  19. Bao X, Muhler M, Pettinger B, Schlögl R, Ertl G (1993) On the nature of the active state of silver during catalytic oxidation of methanol. Catal Lett 22:215–225

    Article  CAS  Google Scholar 

  20. Schubert H, Tegtmeyer U, Schlögl R (1994) On the mechanism of the selective oxidation of methanol over elemental silver. Catal Lett 28:383–395

    Article  CAS  Google Scholar 

  21. Millar GJ, Metson JB, Bowmaker GA, Cooney RP (1995) In situ Raman studies of the selective oxidation of methanol to formaldehyde and ethene to ethylene oxide on a polycrystalline silver catalyst. J Chem Soc, Faraday Trans 91:4149–4159

    Article  CAS  Google Scholar 

  22. Schubert H, Tegtmeyer U, Herein D, Bao X, Muhler M, Schlögl R (1995) On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol. Catal Lett 33:305–319

    Article  CAS  Google Scholar 

  23. Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R (1998) The dynamic restructuring of electrolytic silver during the formaldehyde synthesis reaction. J Catal 179:548–559

    Article  CAS  Google Scholar 

  24. Nagy A, Mestl G (1999) High temperature partial oxidation reactions over silver catalysts. Appl Catal A 188:337–353

    Article  CAS  Google Scholar 

  25. Nagy A, Mestl G, Schlögl R (1999) The role of subsurface oxygen in the silver-catalyzed, oxidative coupling of methane. J Catal 188:58–68

    Article  CAS  Google Scholar 

  26. Wang CB, Deo G, Wachs IE (1999) Interaction of polycrystalline silver with oxygen, water, carbon dioxide, ethylene, and methanol: in situ Raman and catalytic studies. J Phys Chem B 103:5645–5656

    Article  CAS  Google Scholar 

  27. van Santen RA, Kuipers HPCE (1987) The mechanism of ethylene epoxidation. Adv Catal 35:265–321

    Google Scholar 

  28. Besenbacher F, Nørskov JK (1993) Oxygen chemisorption on metal surfaces: general trends for Cu, Ni and Ag. Prog Surf Sci 44:5–66

    Article  CAS  Google Scholar 

  29. Rehren C, Muhler M, Bao X, Schlögl R, Ertl G (1991) The interaction of silver with oxygen. Z Phys Chem 174:11–52

    Article  CAS  Google Scholar 

  30. Pettinger B, Bao X, Wilcock IC, Muhler M, Ertl G (1994) Surface-enhanced Raman scattering from surface and subsurface oxygen species at microscopically well-defined Ag surfaces. Phys Rev Lett 72:1561–1564

    Article  CAS  PubMed  Google Scholar 

  31. Bao X, Muhler M, Pettinger B, Uchida Y, Lehmpful G, Schlögl R, Ertl G (1995) The effect of water on the formation of strongly bound oxygen on silver surfaces. Catal Lett 32:171–183

    Article  CAS  Google Scholar 

  32. Bao X, Muhler M, Schedel-Niedrig T, Schlögl R (1996) Interaction of oxygen with silver at high temperature and atmospheric pressure: a spectroscopic and structural analysis of a strongly bound surface species. Phys Rev B 54:2249–2262

    Article  CAS  Google Scholar 

  33. Beuhler RJ, Rao RM, Hrbek J, White MG (2001) Study of the partial oxidation of methanol to formaldehyde on a polycrystalline Ag foil. J Phys Chem B 105:5950–5956

    Article  CAS  Google Scholar 

  34. van Veen AC, Hinrichsen O, Muhler M (2002) Mechanistic studies on the oxidative dehydrogenation of methanol over polycrystalline silver using the temporal-analysis-of-products approach. J Catal 210:53–66

    Article  CAS  Google Scholar 

  35. Qian M, Liauw MA, Emig G (2003) Formaldehyde synthesis from methanol over silver catalysts. Appl Catal A 238:211–222

    Article  CAS  Google Scholar 

  36. Schedel-Niedrig T, Bao X, Muhler M, Schlögl R (1997) Surface-embedded oxygen: electronic structure of Ag (111) and Cu (poly) oxidized at atmospheric pressure. Ber Bunsenges Phys Chem 101:994–1006

    Article  CAS  Google Scholar 

  37. Waterhouse GIN, Bowmaker GA, Metson JB (2003) Oxygen chemisorption on an electrolytic silver catalyst: a combined TPD and Raman spectroscopic study. Appl Surf Sci 214:36–51

    Article  CAS  Google Scholar 

  38. Bao X, Deng JF, Dong SZ (1985) TDS and XPS studies of the adsorption of O2 on electrolytic silver. Surf Sci 163:444–456

    Article  CAS  Google Scholar 

  39. Deng JF, Xu X, Wang J, Liao Y, Hong B (1995) In situ surface Raman spectroscopy studies of oxygen adsorbed on electrolytic silver. Catal Lett 32:159–170

    Article  CAS  Google Scholar 

  40. Wang JH, Dai WL, Deng JF, Wei XM, Cao YM, Zhai RS (1998) Interaction of oxygen with silver surface at high temperature. Appl Surf Sci 126:148–152

    Article  CAS  Google Scholar 

  41. Boronin AI, Koscheev SV, Zhidomirov GM (1998) XPS and UPS study of oxygen states on silver. J Electron Spectrosc Relat Phenom 96:43–51

    Article  CAS  Google Scholar 

  42. Boronin AI, Koscheev SV, Malakhov VF, Zhidomirov GM (1997) Study of high-temperature oxygen states on the silver surface by XPS and UPS. Catal Lett 47:111–117

    Article  CAS  Google Scholar 

  43. Kondarides DI, Papatheodorou GN, Vayenas CG, Verykois XE (1993) In situ high temperature SERS study of oxygen adsorbed on Ag: support and electrochemical promotion effects. Ber Bunsen-Ges Phys Chem 97:709–719

    Article  CAS  Google Scholar 

  44. Kondarides DI, Verykois XE (1993) Oxygen adsorption on supported silver catalysts investigated by microgravimetric and transient techniques. J Catal 143:481–491

    Article  CAS  Google Scholar 

  45. Grant RB, Lambert RM (1984) Basic studies of the oxygen surface chemistry of silver: chemisorbed atomic and molecular species on pure Ag (111). Surf Sci 146:256–268

    Article  CAS  Google Scholar 

  46. Campbell CT (1985) Atomic and molecular oxygen adsorption on Ag (111). Surf Sci 157:43–60

    Article  CAS  Google Scholar 

  47. Bare SR, Griffiths K, Lennard WN, Tang HT (1995) Generation of atomic oxygen on Ag (111) and Ag (110) using NO2: a TPD, LEED, HREELS, XPS and NRA study. Surf Sci 342:185–198

    Article  CAS  Google Scholar 

  48. Carlisle CI, Fujimoto T, Sim WS, King DA (2000) Atomic imaging of the transition between oxygen chemisorption and oxide film growth on Ag {111}. Surf Sci 470:15–31

    Article  CAS  Google Scholar 

  49. Wang XD, Tysoe WT, Greenler RG, Truszkowska K (1991) A reflection-absorption infrared spectroscopy study of the adsorption of atomic oxygen on silver. Surf Sci 257:335–343

    Article  CAS  Google Scholar 

  50. Wang XD, Tysoe WT, Truszkowska K (1991) A reflection-absorption infrared spectroscopy study of the adsorption of dioxygen species on a silver surface. Surf Sci 258:335–345

    Article  CAS  Google Scholar 

  51. Wang YP, Yeh CT (1991) Electron paramagnetic resonance study of the interactions of oxygen with silver/titania. J Chem Soc, Faraday Trans 87:345–348

    Article  CAS  Google Scholar 

  52. Carter EA, Goddard WA (1989) Chemisorption of oxygen, chlorine, hydrogen, hydroxide, and ethylene on silver clusters: a model for the olefin epoxidation reaction. Surf Sci 209:243–289

    Article  CAS  Google Scholar 

  53. Nakatsuji H, Hu ZM, Nakai H, Ikeda K (1997) Activation of O2 on Cu, Ag, and Au surfaces for the epoxidation of ethylene: dipped adcluster model study. Surf Sci 387:328–341

    Article  CAS  Google Scholar 

  54. Rocca M, Savio L, Vattuone L, Burghaus U, Palomba V, Novelli N, Buatier de Mongeot F, Valbusa U (2000) Phase transition of dissociatively adsorbed oxygen on Ag (001). Phys Rev B 61:213–227

    Article  CAS  Google Scholar 

  55. Rocha TCR, Oestereich A, Demidov DV, Hävecker M, Zafeiratos S, Weinberg G, Bukhtiyarov VI, Knop-Gericke A, Schlögl R (2012) The silver-oxygen system in catalysis: new insights by near ambient pressure X-ray photoelectron spectroscopy. Phys Chem Chem Phys 14:4554–4564

    Article  CAS  PubMed  Google Scholar 

  56. Montoya A, Haynes BS (2009) DFT analysis of the reaction paths of formaldehyde decomposition on silver. J Phys Chem A 113:8125–8131

    Article  CAS  PubMed  Google Scholar 

  57. Montoya A, Haynes BS (2007) Methanol and methoxide decomposition on silver. J Phys Chem C 111:9867–9876

    Article  CAS  Google Scholar 

  58. Andreasen A, Lynggaard H, Stegelmann C, Stoltze P (2005) Simplified kinetic models of methanol oxidation on silver. Appl Catal A 289:267–273

    Article  CAS  Google Scholar 

  59. Aljama H, Yoo JS, Nørskov JK, Abild-Pedersen F, Studt F (2016) Methanol partial oxidation on Ag (111) from first principles. ChemCatChem 8:3621–3625

    Article  CAS  Google Scholar 

  60. Huang W (2013) Crystal plane-dependent surface reactivity and catalytic property of oxide catalysts studied with oxide nanocrystal model catalysts. Top Catal 56:1363–1376

    Article  CAS  Google Scholar 

  61. Huang W, Gao Y (2014) Morphology-dependent surface chemistry and catalysis of CeO2 nanocrystals. Catal Sci Technol 4:3772–3784

    Article  CAS  Google Scholar 

  62. Huang W (2016) Oxide nanocrystal model catalysts. Acc Chem Res 49:520–527

    Article  CAS  PubMed  Google Scholar 

  63. Huang W, Sun G, Cao T (2017) Surface chemistry of group IB metals and related oxides. Chem Soc Rev 46:1977–2000

    Article  CAS  PubMed  Google Scholar 

  64. Huang W (2018) Surface chemistry of solid catalysts. Sci Sin Chim 48:1076–1093

    Article  Google Scholar 

  65. Huang W, Li W (2019) Surface and interface design for heterogeneous catalysis. Phys Chem Chem Phys 21:523–536

    Article  CAS  PubMed  Google Scholar 

  66. Bao H, Zhang W, Hua Q, Jiang Z, Yang J, Huang W (2011) Crystal-plane-controlled surface restructuring and catalytic performance of oxide nanocrystals. Angew Chem Int Ed 50:12294–12298

    Article  CAS  Google Scholar 

  67. Hua Q, Cao T, Gu X, Lu J, Jiang Z, Pan X, Luo L, Li W, Huang W (2014) Crystal-plane-controlled selectivity of Cu2O catalysts in propylene oxidation with molecular oxygen. Angew Chem Int Ed 53:4856–4861

    Article  CAS  Google Scholar 

  68. Zhang Z, Wang S, Song R, Cao T, Luo L, Chen X, Gao Y, Lu J, Li W, Huang W (2017) The most active Cu facet for low-temperature water gas shift reaction. Nat Commun 8:488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang W, Hua Q, Cao T (2014) Influence and removal of capping ligands on catalytic colloidal nanoparticles. Catal Lett 144:1355–1369

    Article  CAS  Google Scholar 

  70. Wang X, Wu HF, Kuang Q, Huang RB, Xie ZX, Zheng LS (2010) Shape-dependent antibacterial activities of Ag2O polyhedral particles. Langmuir 26:2774–2778

    Article  CAS  PubMed  Google Scholar 

  71. Yang M, Zhang J, Cao Y, Wu M, Qian K, Zhang Z, Liu H, Wang J, Chen W, Huang W (2018) Facet sensitivity of capping ligand-free Ag crystals in CO2 electrochemical reduction to CO. ChemCatChem 10:5128–5134

    Article  CAS  Google Scholar 

  72. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer, Minnesota

    Google Scholar 

  73. Waterhouse GIN, Bowmaker GA, Metson JB (2004) Mechanism and active sites for the partial oxidation of methanol to formaldehyde over an electrolytic silver catalyst. Appl Catal A 265:85–101

    Article  CAS  Google Scholar 

  74. Zhang Z, Wu H, Yu Z, Song R, Qian K, Chen X, Tian J, Zhang W, Huang W (2019) Site-resolved Cu2O catalysis in CO oxidation. Angew Chem Int Ed 58:4276–4280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R & D Program of MOST (Grant No. 2017YFB0602205), the National Natural Science Foundation of China (Grant Nos. 21525313, 91745202, 21703227), the Anhui provincial R&D key project, the Chinese Academy of Sciences, and the Changjiang Scholars Program of Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., You, R., Li, D. et al. Methanol Partial Oxidation Over Shaped Silver Nanoparticles Derived from Cubic and Octahedral Ag2O Nanocrystals. Catal Lett 149, 2482–2491 (2019). https://doi.org/10.1007/s10562-019-02850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02850-3

Keywords

Navigation