Skip to main content
Log in

Amino Acid Amide based Ionic Liquid as an Efficient Organo-Catalyst for Solvent-free Knoevenagel Condensation at Room Temperature

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ionic liquids of amino acid amide were synthesized and used as an efficient catalyst for solvent-free Knoevenagel condensation. Synthesized ionic liquids are an environmentally benign, inexpensive, metal free and plays the dual role of solvent as well as an efficient catalyst for Knoevenagel condensation. A wide range of aliphatic, aromatic and heteroaromatic aldehydes easily undergo condensation with malononitrile and ethyl cyanoacetate. The reaction proceeds at room temperature without using any organic solvent and is very fast with good to excellent yield. Additionally, the catalyst is easily separable and recyclable without loss of activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Jones G (1967) Org React 15:204–599

    CAS  Google Scholar 

  2. Freeman F (1980) Chem Rev 80:329–350

    Article  CAS  Google Scholar 

  3. Tietze LF (1996) Chem Rev 96:115–136

    Article  CAS  PubMed  Google Scholar 

  4. Kim I, Kim SG, Choi J, Lee GH (2008) Tetrahedron 64:664–671

    Article  CAS  Google Scholar 

  5. Siddique ZN, Khan K (2014) ACS Sustain Chem Eng 2:1187–1194

    Article  CAS  Google Scholar 

  6. Pandey K, Rangan K, Kumar A (2018) J Org Chem 83:8026–8035

    Article  CAS  PubMed  Google Scholar 

  7. Chavan HV, Bandgar BP (2013) ACS Sustain Chem Eng 1:929–936

    Article  CAS  Google Scholar 

  8. Weclawski MK, Meiling TT, Leniak A, Cywinski PJ, Gryko DT (2015) Org Lett 17:4252–4255

    Article  CAS  PubMed  Google Scholar 

  9. Riveira MJ, Marcarino MO, La-Venia A (2018) Org Lett 20:4000–4004

    Article  CAS  PubMed  Google Scholar 

  10. Chang M-Y, Chen H-Y, Chen Y-H (2017) J Org Chem 82:12631–12639

    Article  CAS  PubMed  Google Scholar 

  11. Sonawane YA, Phadtare SB, Borse BN, Jagtap AR, Shankarling GS (2010) Org Lett 12(7):1456–1459

    Article  CAS  PubMed  Google Scholar 

  12. Devi I, Bhuyan PJ (2004) Tetrahedron Lett 45:8625–8627

    Article  CAS  Google Scholar 

  13. Lu J, Toy PH (2011) Synlett 12:1723–1726

    Google Scholar 

  14. Tanaka K, Toda F (2000) Chem Rev 100:1025–1074

    Article  CAS  PubMed  Google Scholar 

  15. Welton T (1999) Chem Rev 99:2071–2083

    Article  CAS  PubMed  Google Scholar 

  16. Lei Z, Chen B, Koo Y-M, MacFarlane DR (2017) Chem Rev 117:6633–6635

    Article  CAS  PubMed  Google Scholar 

  17. Amarasekara AS (2016) Chem Rev 116:6133–6183

    Article  CAS  PubMed  Google Scholar 

  18. Azov VA, Egorova KS, Seitkalieva MM, Kashin AS, Ananikov VP (2018) Chem Soc Rev 47:1250–1284

    Article  CAS  PubMed  Google Scholar 

  19. Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Chem Soc Rev 40:1383–1403

    Article  CAS  PubMed  Google Scholar 

  20. Lv S, Li Y, Yao T, Yu X, Zhang C, Hai L, Wu Y (2018) Org Lett 20:4994–4997

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Xie F, Li X, Chen L (2018) Green Chem 20:4169–4200

    Article  CAS  Google Scholar 

  22. Wang R, Twamley B, Shreeve JM (2006) J Org Chem 71:426–429

    Article  CAS  PubMed  Google Scholar 

  23. Guo H-M, Cun L-F, Gong L-Z, Mi A-Q, Jiang Y-Z (2005) Chem Commun 11:1450–1452

    Article  CAS  Google Scholar 

  24. Alvim HGO, Correa JR, Assumpcao JAF, da Silva WA, Rodrigues MO, de Macedo JL, Fioramonte M, Gozzo FC, Gatto CC, Neto BAD (2018) J Org Chem 83:4044–4053

    Article  CAS  PubMed  Google Scholar 

  25. Weng J, Wang C, Li H, Wang Y (2006) Green Chem 8:96–99

    Article  CAS  Google Scholar 

  26. Grobeheilmann J, Bandomir J, Kragl U (2015) Chem Eur J 21:18957–18960

    Article  CAS  Google Scholar 

  27. Feng L-C, Sun Y-W, Tang W-J, Xu L-J, Lam K-L, Zhou Z, Chan ASC (2010) Green Chem 12:949–952

    Article  CAS  Google Scholar 

  28. Taheri A, Lai B, Cheng C, Gu Y (2015) Green Chem 17:812–816

    Article  CAS  Google Scholar 

  29. Morrison DW, Forbes DC, Davis JH (2001) Tetrahedron Lett 42:6053–6055

    Article  CAS  Google Scholar 

  30. Harjani JR, Nara SJ, Salunkhe MM (2002) Tetrahedron Lett 43:1127–1130

    Article  CAS  Google Scholar 

  31. Tahmassebi D, Wilson LJA, Kieser JM (2009) Synth Commun 39:2605–2613

    Article  CAS  Google Scholar 

  32. Ranu BC, Jana R (2006) Eur J Org Chem 16:3767–3770

    Article  CAS  Google Scholar 

  33. Santamarta F, Verdia P, Tojo E (2008) Catal Commun 9:1779–1781

    CAS  Google Scholar 

  34. Hu X, Ngwa C, Zheng Q (2016) Curr Org Synth 13:101–110

    Article  CAS  Google Scholar 

  35. Xin X, Guo X, Duan H, Lin Y, Sun H (2007) Catal Commun 8:115–117

    Article  CAS  Google Scholar 

  36. Mulla SAR, Sudalai A, Pathan MY, Siddique SA, Inamdar SM, Chavan SS, Reddy RS (2012) RSC Adv 2:3525–3529

    Article  CAS  Google Scholar 

  37. Zhao S, Wang X, Zhang L (2013) RSC Adv 3:11691–11696

    Article  CAS  Google Scholar 

  38. Ying A, Liang H, Zheng R, Ge C, Jiang H, Wu C (2011) Res Chem Intermed 37:579–585

    Article  CAS  Google Scholar 

  39. Zhu A, Bai S, Jin W, Liu R, Li L, Zhao Y, Wang J (2014) RSC Adv 4:36031–36035

    Article  CAS  Google Scholar 

  40. Fang D-W, Tong J, Guan W, Wang H, Yang J-Z (2010) J Phys Chem B 114:13808–13814

    Article  CAS  PubMed  Google Scholar 

  41. Tang S, Baker GA, Zhao H (2012) Chem Soc Rev 41:4030–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu H, Pan L, Fang X, Liu B, Zhang W, Lu M, Xu Y, Ding T, Chang H (2017) Tetrahedron Lett 58:2360–2365

    Article  CAS  Google Scholar 

  43. Xu D-Z, Liu Y, Shi S, Wang Y (2010) Green Chem 12:514–517

    Article  CAS  Google Scholar 

  44. Ouyang F, Zhou Y, Li Z-M, Hu N, Tao D-J (2014) Korean J Chem Eng 31:1377–1383

    Article  CAS  Google Scholar 

  45. Chen F-F, Huang K, Zhou Y, Tian Z-Q, Zhu X, Tao D-J, Jiang D, Dai S (2016) Angew Chem Int Ed 55:7166–7170

    Article  CAS  Google Scholar 

  46. Chen F-F, Huang K, Fan J-P, Tao D-J (2018) AIChE J 64:632–639

    Article  CAS  Google Scholar 

  47. del Hierro I, Perez Y, Fajardo M (2018) Mol Catal 450:112–120

    Article  CAS  Google Scholar 

  48. Ossowicz P, Rozwadowski Z, Gano M, Janus E (2016) Pol J Chem Technol 18(1):90–95

    Article  CAS  Google Scholar 

  49. Javle BR, Kinage AK (2018) Chem Sel 3:2623–2625

    CAS  Google Scholar 

Download references

Acknowledgements

PAB and BRJ acknowledge to CSIR, New Delhi, for Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Kinage.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10915 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burate, P.A., Javle, B.R., Desale, P.H. et al. Amino Acid Amide based Ionic Liquid as an Efficient Organo-Catalyst for Solvent-free Knoevenagel Condensation at Room Temperature. Catal Lett 149, 2368–2375 (2019). https://doi.org/10.1007/s10562-019-02840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02840-5

Keywords

Navigation