Skip to main content
Log in

Carbon-Supported Pt and Pt–Ir Nanowires for Methanol Electro-Oxidation in Acidic Media

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Direct methanol fuel cells are promising electrochemical energy conversion devices. But, more efficient and stable and less expensive catalysts are still required. Here, we successfully synthesized Pt/C and Pt0.5–Ir0.5/C, Pt0.6–Ir0.4/C, Pt0.7–Ir0.3/C, and Pt0.8–Ir0.2/C nanowires by the chemical reduction of the metallic precursors by formic acid and tested them towards methanol electro-oxidation in acidic media. Neither surfactants nor templates were used during the syntheses. The nanowires catalysts were compared with a commercial state-of-art catalyst aiming the observation of the properties improvements derived from both alloying Pt with Ir and morphology change from nanoparticles to nanowires. Well-defined and slightly agglomerated over the carbon nanowires (diameters and lengths of approximately 5 and 20 nm, respectively) were obtained, the fact that is ascribed to the 40 wt% metal loading. In addition, accelerated degradation tests showed that Pt0.6–Ir0.4/C, Pt0.7–Ir0.3/C and Pt0.8–Ir0.2/C catalysts are more stable than commercial Pt/C. All synthesized nanowires catalysts were more active towards methanol electro-oxidation than the commercial Pt/C. The Pt0.5–Ir0.5/C sample shows Pt mass activities 7 times that of commercial Pt/C. However, the Pt0.8–Ir0.2/C catalyst presented the best specific activity (6 times that of commercial Pt/C), have the highest currents in the derivative voltammetry and the oxidation potential shifts negatively 100 mV in comparison with the commercial Pt/C catalyst. Hence, the nanowires developed in this study are indicated as potential promising catalysts and can be applied successfully as direct methanol fuel cell anodes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andújar JM, Segura F (2009) Renew Sustain Energy Rev 13:2309–2322

    Article  CAS  Google Scholar 

  2. Alcaide F, Cabot PL, Brillas E (2006) J Power Sources 153:47–60

    Article  CAS  Google Scholar 

  3. Hamnett A (1997) Catal Today 38:445–457

    Article  CAS  Google Scholar 

  4. Yi Q, Chen A, Huang W, Zhang J, Liu X, Xu G, Zhou Z (2007) Electrochem Commun 9:1513–1518

    Article  CAS  Google Scholar 

  5. Bresciani F, Rabissi C, Zago M, Gazdzicki P, Schulze M, Guétaz L, Escribano S, Bonde JL, Marchesi R, Casalegno A (2016) J Power Sources 306:49–61

    Article  CAS  Google Scholar 

  6. Gong L, Yang Z, Li K, Ge J, Liu C, Xing W (2018) J Energy Chem 27:1618–1628

    Article  Google Scholar 

  7. El Sawy EN, Molero HM, Birss VI (2014) Electrochim Acta 117:202–210

    Article  CAS  Google Scholar 

  8. Demirci UB (2007) J Power Sources 173:11–18

    Article  CAS  Google Scholar 

  9. Tian ZQ, Jiang SP, Liu Z, Li L (2007) Electrochem Commun 9:1613–1618

    Article  CAS  Google Scholar 

  10. Davies JC, Bonde J, Logadóttir Á, Nørskov JK, Chorkendorff I (2005) Fuel Cells 5:429–435

    Article  CAS  Google Scholar 

  11. Zhou W-P, Li M, Koenigsmann C, Ma C, Wong SS, Adzic RR (2011) Electrochim Acta 56:9824–9830

    Article  CAS  Google Scholar 

  12. Karan HI, Sasaki K, Kuttiyiel K, Farberow CA, Mavrikakis M, Adzic RR (2012) ACS Catal 2:817–824

    Article  CAS  Google Scholar 

  13. Formo E, Peng Z, Lee E, Lu X, Yang H, Xia Y (2008) J Phys Chem C 112:9970–9975

    Article  CAS  Google Scholar 

  14. Freitas RG, Antunes EP, Pereira EC (2009) Electrochim Acta 54:1999–2003

    Article  CAS  Google Scholar 

  15. Assumpcão MHMT, Silva SG, Souza RFB, Buzzo GS, Spinacé EV, Neto AO, Silva JCM (2014) J Hydrog Energy 39:5148–5152

    Article  CAS  Google Scholar 

  16. Toledo-Antonio JA, Ángeles-Chávez C, Cortés-Jácome MA, Cuauhtémoc-López I, López-Salinas E, Pérez-Luna M, Torres-Ferrat G (2012) Appl Catal A 437–438:155–156

    Article  CAS  Google Scholar 

  17. Taylor AK, Perez DS, Zhang X, Pilapil K, Engelhard MH, Gates BD, Rider DA (2017) J Mater Chem A 5:21514–21527

    Article  CAS  Google Scholar 

  18. Sun S, Zhang G, Geng D, Chen Y, Li R, Cai M, Sun X (2011) Angew Chem Int Ed 50:422–426

    Article  CAS  Google Scholar 

  19. Wang S, Jiang SP, Wang X, Guo J (2011) Electrochim Acta 56:1563–1569

    Article  CAS  Google Scholar 

  20. López-Suárez FE, Perez-Cadenas M, Bueno-López A, Carvalho-Filho CT, Eguiluz KIB, Salazar-Banda GR (2015) J Appl Electrochem 45:1057–1068

    Article  CAS  Google Scholar 

  21. Valério Neto ES, Gomes MA, Salazar-Banda GR, Eguiluz KIB (2018) Int J Hydrog Energy 43:178–188

    Article  CAS  Google Scholar 

  22. Silva LSR, López-Suárez FE, Perez-Cadenas M, Santos SF, da Costa LP, Eguiluz KIB, Salazar-Banda GR (2016) Appl Catal B 198:38–48

    Article  CAS  Google Scholar 

  23. Almeida GRO, Sussuchi EM, de Meneses CT, Salazar-Banda GR, Eguiluz KIB (2017) Int J Electrochem Sci 12:7502–7517

    Article  CAS  Google Scholar 

  24. Calderón JC, García G, Calvillo L, Rodríguez JL, Lázaro MJ, Pastor E (2015) Appl Catal B 165:676–686

    Article  CAS  Google Scholar 

  25. Montero MA, Fernández JL, de Chialvo MRG, Chialvo AC (2013) J Phys Chem C 117:20575–25269

    Article  CAS  Google Scholar 

  26. Da Silva FRP, Silva-Junior LC, Camara GA, Giz MJ (2019) J Braz Chem Soc, in press

  27. Puthiyapura VK, Mamlouk M, Pasupathi S, Pollet BG, Scott K (2014) J Power Sources 269:451–460

    Article  CAS  Google Scholar 

  28. Wang R, Wei B, Wang H, Ji S, Key J, Zhang X, Lei Z (2011) Ionics 17:595–601

    Article  CAS  Google Scholar 

  29. Zhang Z, Li M, Wu Z, Li W (2011) Nanotechnology 22:015602

    Article  CAS  PubMed  Google Scholar 

  30. Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ (1994) J Phys Chem 98:617–625

    Article  CAS  Google Scholar 

  31. Han Y, Ouyang Y, Xie Z, Chen J, Chang F, Yu G (2016) J Mater Sci Technol 32:639–645

    Article  Google Scholar 

  32. Silva CD, Morais LH, Gonçalves R, Matos R, Souza GLC, Freitas RG, Pereira EC (2018) Electrochim Acta 280:197–205

    Article  CAS  Google Scholar 

  33. Sun S, Zhang G, Geng D, Chen Y, Banis MN, Li R, Cai M, Sun X (2010) Chem A 16:829–835

    CAS  Google Scholar 

  34. Mahmoud MA, Tabor CE, El-Sayed MA, Ding Y, Wang ZL (2008) J Am Chem Soc 130:4590–4591

    Article  CAS  PubMed  Google Scholar 

  35. Thilaga S, Durga S, Selvarani V, Kiruthika S, Muthukumaran B (2018) Ionics 24:1721–1731

    Article  CAS  Google Scholar 

  36. Antoniassi RM, Silva JCM, Lopes T, Oliveira Neto A, Spinacé EV (2017) Int J Hydrogen Energy 42:28786–28796

    Article  CAS  Google Scholar 

  37. Maillard F, Eikerling M, Cherstiouk OV, Schreier S, Savinova E, Stimming U (2004) Faraday Discuss 125:357–377

    Article  CAS  PubMed  Google Scholar 

  38. Ciapina EG, Santos SF, Gonzalez ER (2018) J Electroanal Chem 815:47–60

    Article  CAS  Google Scholar 

  39. Sun S, Jaouen F, Dodelet J-P (2008) Adv Mater 20:3900–3904

    Article  CAS  Google Scholar 

  40. El Sawy EN, Birss VI (2017) J Electrochem Soc 164:F1572–F1579

    Article  CAS  Google Scholar 

  41. Holt-Hindle P, Yi Q, Wu G, Koczkur K, Chen A (2008) J Electrochem Soc 155:K5–K9

    Article  CAS  Google Scholar 

  42. Salazar-Banda GR, Suffredini HB, Calegaro ML, Tanimoto ST, Avaca LA (2006) J Power Sources 162:9–20

    Article  CAS  Google Scholar 

  43. Velázquez-Palenzuela A, Centellas F, Garrido JA, Arias C, Rodríguez RM, Brillas E, Cabot P-L (2011) J Power Sources 196:3503–3512

    Article  CAS  Google Scholar 

  44. Christensen PA, Hammett A, Troughton GL (1993) J Electroanal Chem 362:207–2018

    Article  CAS  Google Scholar 

  45. Gojkovic S Lj, Vidakovic TR (2000) Electrochim Acta 47:633–642

    Article  Google Scholar 

  46. Tapan NA, Prakash J (2005) Turkish J Eng Environ Sci 29:95–103

    CAS  Google Scholar 

  47. Eguiluz KIB, Salazar-Banda GR, Miwa D, Machado SAS, Avaca LA (2008) J Power Sources 179:42–49

    Article  CAS  Google Scholar 

  48. Murthy A, Manthiram A (2012) J Phys Chem C 116:3827–3832

    Article  CAS  Google Scholar 

  49. Ruiz-Camacho B, Santoyo HHR, Medina-Flores JM, Álvarez-Martínez O (2014) Electrochim Acta 120:344–349

    Article  CAS  Google Scholar 

  50. Kua J, Goddard WA (1999) J Am Chem Soc 121:10928–10941

    Article  CAS  Google Scholar 

  51. Iwasita T (2002) Electrochim Acta 47:3663–3674

    Article  CAS  Google Scholar 

  52. Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) J Electroanal Chem 571:273–282

    Article  CAS  Google Scholar 

  53. Lee K-S, Park I-S, Cho Y-H, Jung D-S, Jung N, Park H-Y, Sung Y-E (2008) J Catal 258:143–152

    Article  CAS  Google Scholar 

  54. Chung DY, Lee KJ, Sung YE (2016) J Phys Chem C 120:9028–9035

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CNPq (Grant Nos. 407274/2013-8, 400443/2013-9, 474261/2013-1, 304419/2015-0, and 310282/2013-6), to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Grant: 001), to FAPITEC/SE from Brazil, for financial support and scholarships. Moreover, we thank Profs. Ronaldo Santos Silva and Euler Araújo dos Santos from the Federal University of Sergipe and to Haoliang Huang from the University of Southampton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katlin Ivon Barrios Eguiluz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, J.Y.C., Valério Neto, E.S., Salazar-Banda, G.R. et al. Carbon-Supported Pt and Pt–Ir Nanowires for Methanol Electro-Oxidation in Acidic Media. Catal Lett 149, 2614–2626 (2019). https://doi.org/10.1007/s10562-019-02839-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02839-y

Keywords

Navigation