Skip to main content
Log in

Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Platinum (Pt)-based electrocatalyst with low Pt content and high electrocatalytic performance is highly desired in fuel cell applications. Herein, we demonstrated that platinum-nickel (Pt-Ni) nanowires with an average composition of PtNi3 and a fishbone structure can be readily synthesized and used as an efficient electrocatalyst toward methanol oxidation reaction (MOR). The PtNi3 fishbone-like nanowires (PtNi3-FBNWs) present features such as richer Pt on the surface than in the bulk, high-index facets on the rough surface, and polyhedral facets at the ends of side chains. Such compositional and structural features could be determinative to the enhanced performance in the electrocatalysis of MOR. Compared with commercial 20% Pt/carbon black (Pt/C), the specific activity and mass activity of the PtNi3-FBNWs are enhanced by approximately 4.76 and 3.02 times, respectively. The stability of electrocatalysis is significantly improved as well. Such comprehensive enhancement indicates that the PtNi3-FBNWs would be a promising candidate toward MOR in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, H. J.; Yang, S. B.; Vajtai, R.; Wang, X.; Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater.2014, 26, 5160–5165.

    Article  CAS  Google Scholar 

  2. Du, X. W.; Luo, S. P.; Du, H. Y; Tang, M.; Huang, X. D.; Shen, P. K. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction. J. Mater. Chem. A2016, 4, 1579–1585.

    Article  CAS  Google Scholar 

  3. Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev.2016, 116, 3594–3657.

    Article  CAS  Google Scholar 

  4. Luo, M. C.; Sun, Y. J.; Zhang, X.; Qin, Y. N.; Li, M. Q.; Li, Y. J.; Li, C. J.; Yang, Y.; Wang, L.; Gao, P. et al. Stable high-index faceted Pt skin on zigzag-like PtFe nanowires enhances oxygen reduction catalysis. Adv. Mater.2018, 30, 1705515.

    Article  Google Scholar 

  5. Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat. Commun.2016, 7, 11850.

    Article  CAS  Google Scholar 

  6. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science2015, 348, 1230–1234.

    Article  CAS  Google Scholar 

  7. Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater.2015, 27, 7204–7212.

    Article  CAS  Google Scholar 

  8. Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nana2015, 9, 7634–7640.

    Article  CAS  Google Scholar 

  9. Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H; Gu, Y. Q.; Zhang, D. Y; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M. et al. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J. Am. Chem. Soc.2017, 139, 8152–8159.

    Article  CAS  Google Scholar 

  10. Bu, L. Z.; Shao, Q.; Huang X. Q. Highly porous Pt-Pb nanostructures as active and ultrastable catalysts for polyhydric alcohol electrooxidations. Sci. China Mater.2019, 62, 341–350.

    Article  CAS  Google Scholar 

  11. Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc.1999, 146, 3750–3756.

    Article  CAS  Google Scholar 

  12. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater.2007, 6, 241–247.

    Article  CAS  Google Scholar 

  13. Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta2002, 47, 3663–3674.

    Article  CAS  Google Scholar 

  14. Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M. C.; Guo, S. J. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater.2016, 28, 10117–10141.

    Article  CAS  Google Scholar 

  15. Li, M. R.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V; Lin, Z. Y et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science2016, 354, 1414–1419.

    Article  CAS  Google Scholar 

  16. Zhang, L.; Niu, W. X.; Xu, G. B. Synthesis and applications of noble metal nanocrystals with high-energy facets. Nana Today2012, 7, 586–605.

    Article  CAS  Google Scholar 

  17. Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate- assisted shape control of Pd and Pt nanocrystals. Adv. Mater.2012, 24, 862–879.

    Article  CAS  Google Scholar 

  18. Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res.2013, 46, 1867–1877.

    Article  CAS  Google Scholar 

  19. Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Chen, S. L.; Li, Y. J.; Li, C. J.; Yang, Y.; Wu, D.; Xu, N. Y.; Xing, Y. et al. Surface and near-surface engineering of PtCo nanowires at atomic scale for enhanced electrochemical sensing and catalysis. Chem. Mater.2018, 30, 6660–6667.

    Article  CAS  Google Scholar 

  20. Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst. J. Am. Chem. Soc.2018, 140, 16159–16167.

    Article  CAS  Google Scholar 

  21. Bu, L. Z.; Feng, Y. G.; Yao, J. L.; Guo, S. J.; Guo, J.; Huang, X. Q. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nana Res.2016, 9, 2811–2821.

    Article  CAS  Google Scholar 

  22. Zheng, J.; Cullen, D. A.; Forest, R. V.; Wittkopf, J. A.; Zhuang, Z. B.; Sheng, W. C.; Chen, J. G.; Yan, Y. S. Platinum-ruthenium nanotubes and platinum-ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol. ACS Catal.2015, 5, 1468–1474.

    Article  CAS  Google Scholar 

  23. Cui, C. H.; Li, H. H.; Yu, S. H. A general approach to electrochemical deposition of high quality free-standing noble metal (Pd, Pt, Au, Ag) sub-micron tubes composed of nanoparticles in polar aprotic solvent. Chem. Commun.2010, 46, 940–942.

    Article  CAS  Google Scholar 

  24. Li, H. H.; Zhao, S.; Gong, M.; Cui, C. H; He, D.; Liang, H. W.; Wu, L.; Yu, S. H. Ultrathin PtPdTe nanowires as superior catalysts for methanol electrooxidation. Angew. Chem., Int. Ed.2013, 52, 7472–7476.

    Article  CAS  Google Scholar 

  25. Zhu, H. Y; Zhang, S.; Guo, S. J.; Su, D.; Sun, S. H. Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction. J. Am. Chem. Soc.2013, 135, 7130–7133.

    Article  CAS  Google Scholar 

  26. Zhu, H. Y.; Zhang, S.; Su, D.; Jiang, G. M.; Sun, S. H. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction. Small2015, 11, 3545–3549.

    Article  CAS  Google Scholar 

  27. Xie, J. P.; Zhang, Q. B.; Lee, J. Y.; Wang, D. I. C. General method for extended metal nanowire synthesis: Ethanol induced self-assembly. J. Phys. Chem. C2007, 777, 17158–17162.

    Article  Google Scholar 

  28. Lai, J. P.; Niu, W. X.; Luque, R.; Xu, G. B. Solvothermal synthesis of metal nanocrystals and their applications. Nana Today2015, 10, 240–267.

    Article  CAS  Google Scholar 

  29. Chen, M.; Pica, T.; Jiang, Y. B.; Li, P.; Yano, K.; Liu, J. P.; Datye, A. K.; Fan, H. Y. Synthesis and self-assembly of FCC phase FePt nanorods. J. Am. Chem. Soc.2007, 729, 6348–6349.

    Article  Google Scholar 

  30. Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science1996, 272, 1924–1925.

    Article  CAS  Google Scholar 

  31. Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev.2016, 776, 10414–10472.

    Article  Google Scholar 

  32. Chen, Y. X.; Chen, S. P.; Zhou, Z. Y.; Tian, N.; Jiang, Y. X.; Sun, S. G.; Ding, Y.; Wang, Z. L. Tuning the shape and catalytic activity of fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry. J. Am. Chem. Soc.2009, 131, 10860–10862.

    Article  CAS  Google Scholar 

  33. Yao, K. X.; Yin, X. M.; Wang, T. H.; Zeng, H. C. Synthesis, self-assembly, disassembly, and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes. J. Am. Chem. Soc.2010, 752, 6131–6144.

    Article  Google Scholar 

  34. Niu, W. X.; Zhang, L.; Xu, G. B. Shape-controlled synthesis of single-crystalline palladium nanocrystals. ACS Nana2010, 4, 1987–1996.

    Article  CAS  Google Scholar 

  35. Jeong, G. H.; Kim, M.; Lee, Y. W.; Choi, W.; Oh, W. T.; Park, Q. H.; Han, S. W. Polyhedral au nanocrystals exclusively bound by {110} facets: The rhombic dodecahedron. J. Am. Chem. Soc.2009, 131, 1672–1673.

    Article  CAS  Google Scholar 

  36. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science2014, 343, 1339–1343.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61575049, 51802054, and 51601046), the 100-Talent Program of Chinese Academy of Sciences, and the start-up funding from National Center for Nanoscience and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Song, L., Xu, Y. et al. Fishbone-like platinum-nickel nanowires as an efficient electrocatalyst for methanol oxidation. Nano Res. 13, 67–71 (2020). https://doi.org/10.1007/s12274-019-2573-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2573-7

Keywords

Navigation