Skip to main content

Advertisement

Log in

Catalytic Transfer Hydrogenation of Biomass-Derived Ethyl Levulinate into Gamma-Valerolactone Over Graphene Oxide-Supported Zirconia Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The transformation of biomass-derived intermediates into value-added chemicals and liquid fuels is of great importance in sustainable chemistry. In this study, graphene oxide supported ZrO2 (ZrO2/GO) was found to be an active heterogeneous catalyst for the transfer hydrogenation of ethyl levulinate to γ-valerolactone (GVL) with iso-propanol as the hydrogen donor. Several important reaction parameters such as the hydrogen donor, the reaction temperature and the catalyst loading were studied in detail with the aim to get a high yield of GVL. It was found that the structure of alcohols had a great effect towards the activity of the ZrO2/GO catalyst and the selectivity of GVL. Iso-propanol was the best hydrogen donor for the transfer hydrogenation of ethyl levulinate to GVL. The highest GVL yield reached 91.7% with an ethyl levulinate conversion of 96.2% under optimal reaction conditions. More importantly, the ZrO2/GO catalyst demonstrated a high stability without the loss of its catalytic activity during the recycling experiments, which should be due to the strong interaction between GO and ZrO2.

Graphical Abstract

The graphene oxide supported ZrO2 (ZrO2/GO) catalyst showed high activity for the transfer hydrogenation of ethyl levulinate to GVL with a high yield up to 91.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Javidsharifi M, Niknam T, Aghaei J, Mokryani G (2018) Appl Energy 216:367–381

    Article  Google Scholar 

  2. Zhang ZH, Huber GW (2018) Chem Soc Rev 47:1351–1390

    Article  CAS  PubMed  Google Scholar 

  3. van Putten RJ, van der Waal JC, de Jong E, Heeres HJ (2017) Carbohydr Res 446:1–6

    Article  CAS  PubMed  Google Scholar 

  4. Bender TA, Dabrowski JA, Gagne MR (2018) Nat Rev Chem 2:35–46

    Article  CAS  Google Scholar 

  5. Tiong YW, Yap CL, Gan SY, Yap WSP (2018) Ind Eng Chem Res 57:4749–4766

    Article  CAS  Google Scholar 

  6. Mika LT, Csefalvay E, Nemeth A (2018) Chem Rev 118:505–613

    Article  CAS  PubMed  Google Scholar 

  7. Zhang ZH (2016) Chemsuschem 9:156–171

    Article  CAS  PubMed  Google Scholar 

  8. Yu IKM, Tsang DCW, Yip ACK, Hunt AJ, Sherwood J, Shang J, Song H, Ok YS, Poon CS (2018) Green Chem 20:2064–2074

    Article  CAS  Google Scholar 

  9. Mellmer MA, Sanpitakseree C, Demir B, Bai P, Ma KW, Neurock M, Dumesic JA (2018) Nat Catal 1:199–207

    Article  CAS  Google Scholar 

  10. Zeng FX, Liu HF, Deng L, Liao B, Pang H, Guo QX (2013) Chemsuschem 6:600–603

    Article  CAS  PubMed  Google Scholar 

  11. Orha L, Tukacs JM, Gyarmati B, Szilagyi A, Kollar L, Mika LT (2018) ACS Sustain Chem Eng 6:5097–5104

    Article  CAS  Google Scholar 

  12. Gupta SSR, Kantam ML (2018) Catal Today 309:189–194

    Article  CAS  Google Scholar 

  13. Melero JA, Morales G, Iglesias J, Paniagua M, Lopez-Aguado C, Wilson K, Osatiashtiani A (2017) Green Chem 19:5114–5121

    Article  CAS  Google Scholar 

  14. Osawa T, Tanabe Y (2018) Catal Lett 148:824–830

    Article  CAS  Google Scholar 

  15. Yang WJ, Cheng HY, Zhang B, Li Y, Liu T, Lan ML, Yu YC, Zhang C, Lin WW, Fujita S, Arai M, Zhao FY (2016) Green Chem 18:3370–3377

    Article  CAS  Google Scholar 

  16. Kubo Y, Kakizaki D, Kogo M, Magatani Y (2016) Supramol Chem 28:91–97

    Article  CAS  Google Scholar 

  17. Yang Y, Sun CJ, Brown DE, Zhang LQ, Yang F, Zhao HR, Wang Y, Ma XH, Zhang X, Ren Y (2016) Green Chem 18:3558–3566

    Article  CAS  Google Scholar 

  18. Gilkey MJ, Xu BJ (2016) ACS Catal 6:1420–1436

    Article  CAS  Google Scholar 

  19. Wang S, Huang H, Dorcet V, Roisnel T, Bruneau C, Fischmeister C (2017) Organometallics 36:3152–3162

    Article  CAS  Google Scholar 

  20. Chia M, Dumesic JA (2011) Chem Commun 47:12233–12235

    Article  CAS  Google Scholar 

  21. Tang X, Hu L, Sun Y, Zhao G, Hao W, Lin L (2013) RSC Adv 3:10277–10284

    Article  CAS  Google Scholar 

  22. Abdolhosseinzadeh S, Sadighikia S, Gursel SA (2018) ACS Sustain Chem Eng 6:3773–3782

    Article  CAS  Google Scholar 

  23. Saada R, Kellici S, Heil T, Morgan D, Saha B (2015) Appl Catal B 168–169:353–362

    Article  CAS  Google Scholar 

  24. Omarov SO, Vlasov EA, Sladkovskiy DA, Semikin KV, Matveyeva AN, Fedorov SP, Oganesyan GV, Murzin DY (2018) Appl Catal B 230:246–259

    Article  CAS  Google Scholar 

  25. Kumar S, Kumar S, Tiwari S, Srivastava S, Srivastava M, Yadav BK, Kumar S, Tran TT, Dewan AK, Mulchandani A, Sharma JG, Maji S, Malhotra BD (2015) Adv Sci 2:1500048–1500056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (21606082), the Scientific Research Fund of Hunan Provincial Education Department (17C0951), Hunan Provincial Natural Science Foundation of China (2018JJ3334), Hunan Provincial Innovation Foundation for Postgraduate (CX2018B295), and the Opening Fund of National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources (KF201803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianxiang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, J., Zhou, S., Liu, X. et al. Catalytic Transfer Hydrogenation of Biomass-Derived Ethyl Levulinate into Gamma-Valerolactone Over Graphene Oxide-Supported Zirconia Catalysts. Catal Lett 149, 2749–2757 (2019). https://doi.org/10.1007/s10562-019-02835-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02835-2

Keywords

Navigation