Skip to main content
Log in

Synthesis of biofuel via levulinic acid esterification over porous solid acid consisting of tungstophosphoric acid and reduced graphene oxide

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) was synthesized by chemical reduction of graphene oxide with hydrazine hydrate and used as supports to prepare a series of H3PW12O40 (HPW)-based porous solid acids for the first time. Esterification of levulinic acid with ethanol was used to investigate the catalytic properties of the resulting HPW/rGO catalysts. The results showed that the heterogeneous catalysts possessed a porous structure and that their textural characteristics and catalytic activities were influenced by the loading of HPW. Remarkably, they were efficient in the synthesis of ethyl levulinate, with the one with an HPW loading of 45 wt% exhibiting the best efficiency. The conversion of levulinic acid was as high as 96.9%. Meanwhile, the resulting HPW/rGO catalysts also have satisfactory durability. The conversion of levulinic acid still remains at about 53.1% after five cycles under the present conditions. Furthermore, the various catalytic reaction parameters, such as reaction time, ethanol-to-LA molar ratio, and the catalyst dosage, are optimized to maximize the conversion of levulinic acid over 45 wt% HPW/rGO catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.M.G. Maldonado, R.S. Assary, J. Dumesic, L.A. Curtiss, Energy Environ. Sci. 6981, 5 (2012)

    Google Scholar 

  2. Y.B. Huang, T. Yang, B. Cai, X. Chang, H. Pan, RSC Adv. 2106, 6 (2016)

    Google Scholar 

  3. E. Siva Sankar, V. Mohan, M. Suresh, G. Saidulu, B. David Raju, K.S. Rama Rao, Catal. Commun. 1, 75 (2016)

    Google Scholar 

  4. M.A. Tejero, E. Ramírez, C. Fité, J. Tejero, F. Cunill, Appl. Catal. A Gen. 56, 517 (2016)

    Google Scholar 

  5. C.R. Patil, P.S. Niphadkar, V.V. Bokade, P.N. Joshi, Catal. Commun. 188, 43 (2014)

    Google Scholar 

  6. D.R. Fernandesa, A.S. Rochaa, E.F. Maia, C.J.A. Motab, V. Teixeira da Silva, Appl. Catal. A Gen. 199, 425–426 (2012)

    Google Scholar 

  7. Y. Kuwahara, W. Kaburagi, K. Nemoto, T. Fujitani, Appl. Catal. A Gen. 186, 476 (2014)

    Google Scholar 

  8. Z.L. Li, Y.C. Liu, W. Kwapinski, J.J. Leahy, Mater. Chem. Phys. 82, 145 (2014)

    CAS  Google Scholar 

  9. Y. Kuwahara, T. Fujitani, H. Yamashita, Catal. Today 18, 237 (2014)

    Google Scholar 

  10. Z.L. Li, R. Wnetrzak, W. Kwapinski, J.J. Leahy, ACS Appl. Mater. Interfaces 4499, 4 (2012)

    Google Scholar 

  11. K.Y. Nandiwale, V.V. Bokade, Environ. Prog. Sustain. 795, 34 (2015)

    Google Scholar 

  12. F.D. Pileidis, M. Tabassum, S. Coutts, M.M. Titirici, Chin. J. Catal. 929, 35 (2014)

    Google Scholar 

  13. D.Y. Song, S. An, B. Lu, Y.H. Guo, J.Y. Leng, Appl. Catal. B Environ. 445, 179 (2015)

    Google Scholar 

  14. X.J. Kong, S.X. Wu, X.L. Li, J.H. Liu, Energ. Fuel. 6500, 30 (2016)

    Google Scholar 

  15. D.Y. Song, S. An, Y.N. Sun, P.P. Zhang, Y.H. Guo, D.D. Zhou, ChemCatChem 2037, 8 (2016)

    Google Scholar 

  16. Y. Chen, X.L. Zhang, M.M. Dong, Y.H. Wu, G.P. Zheng, J. Huang, X.X. Guan, X.C. Zheng, J. Taiwan Inst. Chem. E. 147, 61 (2016)

    Google Scholar 

  17. M. Wu, Q.Q. Zhao, J. Li, X.L. Su, H.Y. Wu, X.X. Guan, X.C. Zheng, J. Porous Mater. 1329, 23 (2016)

    Google Scholar 

  18. M. Klein, A. Varvak, E. Segal, B. Markovsky, I.N. Pulidindi, N. Perkas, A. Gedanken, Green Chem. 2418, 17 (2015)

    Google Scholar 

  19. I. Holclajtner-Antunović, D. Bajuk-Bogdanović, A. Popa, B.N. Vasiljević, J. Krstić, S. Mentusa, S. Uskoković-Marković, Appl. Surf. Sci. 466, 328 (2015)

    Google Scholar 

  20. M. Wu, X.L. Zhang, X.L. Su, X.Y. Li, X.C. Zheng, X.X. Guan, P. Liu, Catal. Commun. 66, 85 (2016)

    Google Scholar 

  21. B.B. Dong, B.B. Zhang, H.Y. Wu, S.D. Li, K. Zhang, X.C. Zheng, Micropor. Mesopor. Mater. 186, 176 (2013)

    Google Scholar 

  22. J.K. Meng, Y. Cao, Y. Suo, Y.S. Liu, J.M. Zhang, X.C. Zheng, Electrochim. Acta 1001, 176 (2015)

    Google Scholar 

  23. C. Nethravathi, C.R. Rajamathi, M. Rajamathi, U.K. Gautam, X. Wang, D. Golberg, Y. Bando, A.C.S. Appl, Mater. Interfaces 2708, 5 (2013)

    Google Scholar 

  24. S.H. Chai, H.P. Wang, Y. Liang, B.Q. Xu, Green Chem. 1087, 10 (2008)

    Google Scholar 

  25. C.H. Su, Bioresour. Technol. 522, 130 (2013)

    Google Scholar 

  26. F. Ezebor, M. Khairuddean, A.Z. Abdullah, P.L. Boey, Energy 493, 70 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (No. U1304203), the Natural Science Foundation of Henan Province (No. 162300410258), and the Foundation of Henan Educational Committee (No. 16A150046).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-Cheng Zheng or Xiao-Li Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, XC., Li, N., Wu, M. et al. Synthesis of biofuel via levulinic acid esterification over porous solid acid consisting of tungstophosphoric acid and reduced graphene oxide. Res Chem Intermed 43, 6651–6664 (2017). https://doi.org/10.1007/s11164-017-3012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3012-6

Keywords

Navigation