Skip to main content
Log in

Exploring the Keggin-Type Heteropolyacid-Catalyzed Reaction Pathways of the β-Pinene with Alkyl Alcohols

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, we investigated the activity of Keggin heteropolyacid catalysts (i.e., H3PW12O40, H3PMo12O40 and H4SiW12O40) in β-pinene reactions with alkyl alcohols (i.e. methyl, ethyl, propyl, sec-propyl, butyl and sec-butyl alcohols), and exploring the different aspects that drive the selectivity of this process. We have found that carbon skeletal rearrangements and isomerization providing intermediate carbocations that controlling the reaction selectivity. β-pinene was preferentially converted to α-terpinyl ion which undergoes a nucleophilic attack of alcohol providing alkyl alcohol. Bornyl ion was converted to bornyl and fenchyl ethers. The other secondary products were β-pinene isomers obtained from bornyl and α-terpinyl carbocations. Phosphotungstic acid (i.e., H3PW12O40) was the most active catalyst and selective toward the main product (α-terpinyl alkyl ether); the highest conversion (ca. 96%) and ether selectivity (ca. 61%) was achieved in the reactions with β-pinene. Although having also been alkoxylate, α-pinene was less reactive (ca. 40%), while camphene and limonene remained unreactive under reaction conditions studied. An increase of temperature resulted in an improvement on conversion of β-pinene and selectivity toward α-terpinyl methyl ether. Similarly, the H3PW12O40 concentration played a crucial role on reaction selectivity. This work presents positive features such as a short reaction time, high atom economy, mild reaction conditions (i.e., low temperature and room pressure). Even though soluble the catalyst was easily recovered by liquid -liquid extraction and efficiently reused.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

adapted from refs. 18, 26]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gallezot P (2012) Chem Soc Rev 41:1538

    Article  CAS  PubMed  Google Scholar 

  2. Salakhutdinov NF, Volcho KP, Yarovaya OI (2017) Pure Appl Chem 89(8):1105

    Article  CAS  Google Scholar 

  3. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  PubMed  Google Scholar 

  4. Surburg H, Panten J (2006) Common fragrance and flavor materials: preparation, properties and uses. John Wiley & sons, New Jersey

    Book  Google Scholar 

  5. Neuenschwander U, Guignard F, Hermans I (2010) Chem Sus Chem 3:75

    Article  CAS  Google Scholar 

  6. de Paula FGF, Berllini L, da Silva MJ (2013) Catal Commun 42:129

    Article  CAS  Google Scholar 

  7. Coelho JV, Oliveira LCA, Moura FCC, de Souza PP, Silva CA, Batista KB, da Silva MJ (2012) Appl Catal A 419–420:215

    Article  CAS  Google Scholar 

  8. da Silva MJ, Vieira LMM, Oliveira AA, Ribeiro MC (2013) Monatsh Chem 144:321

    Article  CAS  Google Scholar 

  9. da Silva MJ, Ayala DAM (2016) Catal Sci Technol 6:3197

    Article  CAS  Google Scholar 

  10. da Silva MJ, Carari DM, da Silva AM (2015) RSC Adv 5:10529

    Article  CAS  Google Scholar 

  11. Noma Y, Asakawa Y (2010) In: Baser KHC, Buchbauer G (eds) Handbook of essential oils: science, technology, and applications. CRC Press, Boca Raton

    Google Scholar 

  12. Zhou P, Jiang W, Guo Y, Chen X, Xiao S (1989) Chin Sci Bull 34:125

    CAS  Google Scholar 

  13. Besson M, Gallezot P, Pinel C (2014) Chem Rev 114:1827

    Article  CAS  PubMed  Google Scholar 

  14. Catrinescu C, Fernandes C, Castilho P, Breen C (2015) Appl Catal A 489:171

    Article  CAS  Google Scholar 

  15. Pito DS, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Chem Eng J 147:302

    Article  CAS  Google Scholar 

  16. Pito DS, Matos I, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2010) Appl Catal A 373:140

    Article  CAS  Google Scholar 

  17. Caiado M, Machado A, Santos RN, Matos I, Fonseca IM, Ramos AM, Vital J, Valente AA, Castanheiro JE (2013) Appl Catal A 451:36

    Article  CAS  Google Scholar 

  18. Matos I, Silva MF, Ruiz-Rosas R, Vital J, Rodriguez-Mirasol J, Cordero T, Castanheiro JE, Fonseca IM (2014) Micropor Mesopor Mat 199:66

    Article  CAS  Google Scholar 

  19. Yadav JS, Reddy BVS, Narasimhulu G, Purnima KV (2009) Tetrahedron Lett 50:5783

    Article  CAS  Google Scholar 

  20. Castanheiro JE, Guerreiro L, Fonseca IM, Ramos AM (2008) Stud Surf Sci Catal 174:1319

    Article  Google Scholar 

  21. Castanheiro JE, Ramos AM, Fonseca I, Vital J (2003) Catal Today 82:187

    Article  CAS  Google Scholar 

  22. Cotta RF, da Silva Rocha KA, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2017) Catal Today 289:14

    Article  CAS  Google Scholar 

  23. de Meireles ALP, Costa MS, da Silva Rocha KA, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2014) ChemCatChem 6:2706

    Article  CAS  Google Scholar 

  24. Katritzky AR, Ignatchenko ES, Barcock RA, Lobanov VS (1994) Anal Chem 66:1799

    Article  CAS  Google Scholar 

  25. Timofeeva MN (2003) Appl Catal A 256:19–35

    Article  CAS  Google Scholar 

  26. Hensen K, Mahaim C, Hioderich WF (1997) Appl Catal A 149:311

    Article  CAS  Google Scholar 

  27. He X, Xu R, Zhang L, Zhang F, Zhou Z, Zhang Z (2016) Chem Engin Res Des 114:60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from CNPq and FAPEMIG (Brasil). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio José da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polo, H.P., Lopes, N.P.G. & da Silva, M.J. Exploring the Keggin-Type Heteropolyacid-Catalyzed Reaction Pathways of the β-Pinene with Alkyl Alcohols. Catal Lett 149, 2844–2853 (2019). https://doi.org/10.1007/s10562-019-02808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02808-5

Keywords

Navigation