Skip to main content
Log in

Study on the Catalytic Properties of Ru/TiO2 Catalysts for the Catalytic Oxidation of (Chloro)-Aromatics

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, we presented a detailed evaluation of Ru/TiO2 (P25) catalysts for the catalytic oxidation of (chloro)-aromatics. The model catalysts were synthesized through wet impregnation. Catalytic evaluations, as well as ICP, BET, XRD and TEM analyses, were conducted. The results indicated that RuO2 tended to be distributed on the rutile phase of TiO2, leading to an inhomogeneous distribution. These Ru/TiO2 catalysts were very active, especially for chlorobenzene oxidation. The conversions of benzene and chlorobenzene were both suppressed by the introduction of additional water. But the amount of polychlorinated benzenes as by-products was also reduced. However, the activity of the catalyst significantly decreased with an increase in calcination temperature, suggesting that the thermal stability of the catalyst still needed to be improved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cai C, Geng F, Tie X, Yu Q, An J (2010) Characteristics and source apportionment of VOCs measured in Shanghai. China Atmos Environ 44(38):5005–5014

    Article  CAS  Google Scholar 

  2. Duan J, Tan J, Yang L, Wu S, Hao J (2008) Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos Res 88(1):25–35

    Article  CAS  Google Scholar 

  3. Guo H, Wang T, Simpson IJ, Blake DR, Yu XM, Kwok YH et al (2004) Source contributions to ambient VOCs and CO at a rural site in Eastern China. Atmos Environ 38(27):4551–4560

    Article  CAS  Google Scholar 

  4. Liu Y, Shao M, Fu L, Lu S, Zeng L, Tang D (2008) Source profiles of volatile organic compounds (VOCs) measured in China: part I. Atmos Environ 42(25):6247–6260

    Article  CAS  Google Scholar 

  5. Na K, Kim YP, Moon I, Moon KC (2004) Chemical composition of major VOC emission sources in the Seoul atmosphere. Chemosphere 55(4):585–594

    Article  CAS  PubMed  Google Scholar 

  6. Seco R, Penuelas J, Filella I (2007) Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41(12):2477–2499

    Article  CAS  Google Scholar 

  7. Antonio Aguilera D, Perez A, Molina R, Moreno S (2011) Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl Catal B Environ 104(1–2):144–150

    Article  CAS  Google Scholar 

  8. Behar S, Gonzalez P, Agulhon P, Quignard F, Swierczynski D (2012) New synthesis of nanosized Cu-Mn spinels as efficient oxidation catalysts. Catal Today 189(1):35–41

    Article  CAS  Google Scholar 

  9. Radic N, Grbic B, Terlecki-Baricevic A (2004) Kinetics of deep oxidation of n-hexane and toluene over Pt/Al2O3 catalysts—platinum crystallite size effect. Appl Catal B Environ 50(3):153–159

    Article  CAS  Google Scholar 

  10. Tian Z, Ngamou PHT, Vannier V, Kohse-Hoeinghaus K, Bahlawane N (2012) Catalytic oxidation of VOCs over mixed Co-Mn oxides. Appl Catal B Environ 117:125–134

    Article  CAS  Google Scholar 

  11. Zhang C, Wang C, Zhan W, Guo Y, Guo Y, Lu G et al (2013) Catalytic oxidation of vinyl chloride emission over catalysts. Appl Catal B Environ 129:509–516

    Article  CAS  Google Scholar 

  12. He C, Li J, Li P, Cheng J, Hao Z, Xu Z (2010) Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. Appl Catal B Environ 96(3–4):466–475

    Article  CAS  Google Scholar 

  13. He C, Li P, Cheng J, Hao Z, Xu Z (2010) A comprehensive study of deep catalytic oxidation of benzene, toluene, ethyl acetate, and their mixtures over Pd/ZSM-5 catalyst: mutual effects and kinetics. Water Air Soil Pollut 209(1–4):365–376

    Article  CAS  Google Scholar 

  14. Ribeiro F, Silva JM, Silva E, Vaz MF, Oliveira FAC (2011) Catalytic combustion of toluene on Pt zeolite coated cordierite foams. Catal Today 176(1):93–96

    Article  CAS  Google Scholar 

  15. Wu JC, Lin Z, Tsai F, Pan J (2000) Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catal Today 63(2–4):419–426

    Article  CAS  Google Scholar 

  16. Bertinchamps F, Gregoire C, Gaigneaux EM (2006) Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics. Part I: identification of the optimal main active phases and supports. Appl Catal B Environ 66(1–2):1–9

    Article  CAS  Google Scholar 

  17. Bertinchamps F, Gregoire C, Gaigneaux EM (2006) Systematic investigation of supported transition metal oxide based formulations for the catalytic oxidative elimination of (chloro)-aromatics. Part II: influence of the nature and addition protocol of secondary phases to VOx/TiO2. Appl Catal B Environ 66(1–2):10–22

    Article  CAS  Google Scholar 

  18. Busca G, Baldi M, Pistarino C, Amores JMG, Escribano VS, Finocchio E et al (1999) Evaluation of V2O2-WO3-TiO2 and alternative SCR catalysts in the abatement of VOCs. Catal Today 53(4):525–533

    Article  CAS  Google Scholar 

  19. Chang MB, Chi KH, Chang SH, Yeh JW (2007) Destruction of PCDD/Fs by SCR from flue gases of municipal waste incinerator and metal smelting plant. Chemosphere 66(6):1114–1122

    Article  CAS  PubMed  Google Scholar 

  20. Debecker DP, Bouchmella K, Delaigle R, Eloy P, Poleunis C, Bertrand P et al (2010) One-step non-hydrolytic sol-gel preparation of efficient V2O5-TiO2 catalysts for VOC total oxidation. Appl Catal B Environ 94(1–2):38–45

    Article  CAS  Google Scholar 

  21. Delaigle R, Debecker DP, Bertinchamps F, Gaigneaux EM (2009) Revisiting the behaviour of vanadia-based catalysts in the abatement of (chloro)-aromatic pollutants: towards an integrated understanding. Top Catal 52(5):501–516

    Article  CAS  Google Scholar 

  22. Hetrick CE, Lichtenberger J, Amiridis MD (2008) Catalytic oxidation of chlorophenol over V2O5/TiO2 catalysts. Appl Catal B Environ 77(3–4):255–263

    Article  CAS  Google Scholar 

  23. Hetrick CE, Patcas F, Amiridis MD (2011) Effect of water on the oxidation of dichlorobenzene over V2O5/TiO2 catalysts. Appl Catal B Environ 101(3–4):622–628

    Article  CAS  Google Scholar 

  24. Schimmoeller B, Delaigle R, Debecker DP, Gaigneaux EM (2010) Flame-made vs wet-impregnated vanadia/titania in the total oxidation of chlorobenzene Possible role of VOx species. Catal Today 157(1–4):198–203

    Article  CAS  Google Scholar 

  25. Weber R, Sakurai T, Hagenmaier H (1999) Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts. Appl Catal B Environ 20(4):249–256

    Article  CAS  Google Scholar 

  26. Wang J, Wang X, Liu X, Zeng J, Guo Y, Zhu T (2015) Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/TiO2 catalysts. J Mol Catal A: Chem 402:1–9

    Article  CAS  Google Scholar 

  27. Bertinchamps F, Poleunis C, Gregoire C, Eloy P, Bertrand P, Gaigneaux EM (2008) Elucidation of deactivation or resistance mechanisms of CrOx, VOx, and MnOx supported phases in the total oxidation of chlorobenzene via ToF-SIMS and XPS analyses. Surf Interface Anal 40(3–4):231–236

    Article  CAS  Google Scholar 

  28. Liotta LF, Di Carlo G, Pantaleo G, Deganello G (2005) Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite catalysts for methane combustion: correlation between morphology reduction properties and catalytic activity. Catal Commun 6(5):329–336

    Article  CAS  Google Scholar 

  29. Liotta LF, Di Carlo G, Pantaleo G, Venezia AM, Deganello G (2006) Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4-CeO2 interaction and catalytic activity. Appl Catal B Environ 66(3–4):217–227

    Article  CAS  Google Scholar 

  30. Liotta LF, Ousmane M, Di Carlo G, Pantaleo G, Deganello G, Boreave A et al (2009) Catalytic removal of toluene over Co3O4-CeO2 mixed oxide catalysts: comparison with Pt/Al2O3. Catal Lett 127(3–4):270–276

    Article  CAS  Google Scholar 

  31. Liotta LF, Ousmane M, Di Carlo G, Pantaleo G, Deganello G, Marci G et al (2008) Total oxidation of propene at low temperature over Co3O4-CeO2 mixed oxides: role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity. Appl Catal A Gen 347(1):81–88

    Article  CAS  Google Scholar 

  32. Tang W, Wu X, Li S, Li W, Chen Y (2014) Porous Mn-Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catal Commun 56:134–138

    Article  CAS  Google Scholar 

  33. Wang X, Kang Q, Li D (2009) Catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Appl Catal B Environ 86(3–4):166–175

    CAS  Google Scholar 

  34. Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H (2011) CO2 methanation on Ru-doped ceria. J Catal 278(2):297–309

    Article  CAS  Google Scholar 

  35. Fernandez C, Sassoye C, Debecker DP, Sanchez C, Ruiz P (2014) Effect of the size and distribution of supported Ru nanoparticles on their activity in ammonia synthesis under mild reaction conditions. Appl Catal A Gen 474:194–202

    Article  CAS  Google Scholar 

  36. Urabe K, Yoshioka T, Ozaki A (1978) Ammonia-synthesis activity of a raney ruthenium catalyst. J Catal 54(1):52–56

    Article  CAS  Google Scholar 

  37. Amrute AP, Mondelli C, Hevia MAG, Perez-Ramirez J (2011) Mechanism-performance relationships of metal oxides in catalyzed HCl oxidation. ACS Catal 1(6):583–590

    Article  CAS  Google Scholar 

  38. Hevia MAG, Amrute AP, Schmidt T, Perez-Ramirez J (2010) Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. J Catal 276(1):141–151

    Article  CAS  Google Scholar 

  39. Zweidinger S, Hofmann JP, Balmes O, Lundgren E, Over H (2010) In situ studies of the oxidation of HCl over RuO2 model catalysts: stability and reactivity. J Catal 272(1):169–175

    Article  CAS  Google Scholar 

  40. Mitsui T, Tsutsui K, Matsui T, Kikuchi R, Eguchi K (2008) Support effect on complete oxidation of volatile organic compounds over Ru catalysts. Appl Catal B Environ 81(1–2):56–63

    Article  CAS  Google Scholar 

  41. Okal J, Zawadzki M (2009) Catalytic combustion of butane on Ru/gamma-Al2O3 catalysts. Appl Catal B Environ 89(1–2):22–32

    Article  CAS  Google Scholar 

  42. Okal J, Zawadzki M (2009) Influence of catalyst pretreatments on propane oxidation over Ru/gamma-Al2O3. Catal Lett 132(1–2):225–234

    Article  CAS  Google Scholar 

  43. Dai Q, Bai S, Wang Z, Wang X, Lu G (2012) Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts. Appl Catal B Environ 126:64–75

    Article  CAS  Google Scholar 

  44. Dai Q, Bai S, Wang J, Li M, Wang X, Lu G (2013) The effect of TiO2 doping on catalytic performances of Ru/CeO2 catalysts during catalytic combustion of chlorobenzene. Appl Catal B Environ 142:222–233

    Article  CAS  Google Scholar 

  45. Huang H, Dai Q, Wang X (2014) Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl Catal B Environ 158:96–105

    Article  CAS  Google Scholar 

  46. Dai Q, Bai S, Wang X, Lu G (2013) Catalytic combustion of chlorobenzene over Ru-doped ceria catalysts: mechanism study. Appl Catal B Environ 129:580–588

    Article  CAS  Google Scholar 

  47. Debecker DP, Farin B, Gaigneaux EM, Sanchez C, Sassoye C (2014) Total oxidation of propane with a nano-RuO2/TiO2 catalyst. Appl Catal A Gen 481:11–18

    Article  CAS  Google Scholar 

  48. Van den Brink RW, Louw R, Mulder P (1998) Formation of polychlorinated benzenes during the catalytic combustion of chlorobenzene using a Pt/gamma-Al2O3 catalyst. Appl Catal B Environ 16(3):219–226

    Article  Google Scholar 

  49. Assmann J, Crihan D, Knapp M, Lundgren E, Loffler E, Muhler M et al (2005) Understanding the structural deactivation of ruthenium catalysts on an atomic scale under both oxidizing and reducing conditions. Angew Chem Int Edn 44(6):917–920

    Article  CAS  Google Scholar 

  50. Assmann J, Narkhede V, Khodeir L, Loffler E, Hinrichsen O, Birkner A et al (2004) On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: steady-state and transient kinetics combined with in situ infrared spectroscopy. J Phys Chem B 108(38):14634–14642

    Article  CAS  Google Scholar 

  51. Kim YD, Schwegmann S, Seitsonen AP, Over H (2001) Epitaxial growth of RuO2(100) on Ru(1010): surface structure and other properties. J Phys Chem B 105(11):2205–2211

    Article  CAS  Google Scholar 

  52. Knapp M, Seitsonen AP, Kim YD, Over H (2004) Catalytic activity of the RuO2(100) surface in the oxidation of CO. J Phys Chem B 108(38):14392–14397

    Article  CAS  Google Scholar 

  53. Over H, Muhler M (2003) Catalytic CO oxidation over ruthenium - bridging the pressure gap. Prog Surf Sci 72(1–4):3–17

    Article  CAS  Google Scholar 

  54. Over H, Seitsonen AP, Lundgren E, Smedh M, Andersen JN (2002) On the origin of the Ru-3d5/2 satellite feature from RuO2(110). Surf Sci 504(1–3):L196–L200

    Article  CAS  Google Scholar 

  55. De Jong V, Cieplik NK, Louw R (2004) Formation of dioxins in the catalytic combustion of chlorobenzene and a micropollutant-like mixture on Pt/gamma-Al2O3. Environ Sci Technol 38(19):5217–5223

    Article  CAS  PubMed  Google Scholar 

  56. Yang Y, Yu G, Deng SB, Wang SW, Xu ZZ, Huang J et al (2012) Catalytic oxidation of hexachlorobenzene in simulated gas on V2O5-WO3/TiO2 catalyst. Chem Eng J 192:284–291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51708540) and the Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-ZS-2017-6-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Tingyu Zhu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, H., Liu, X. et al. Study on the Catalytic Properties of Ru/TiO2 Catalysts for the Catalytic Oxidation of (Chloro)-Aromatics. Catal Lett 149, 2004–2014 (2019). https://doi.org/10.1007/s10562-019-02802-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02802-x

Keywords

Navigation