Skip to main content
Log in

The Low Dimensional Co-Based Nanorods as a Novel Platform for Selective Hydrogenation of Cinnamaldehyde

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Since hydrogenation of C=C bond in the cinnamaldehyde is thermodynamically favored, the selective hydrogenation of C=O group is challenging. Developing effective catalysts for this transformation has been hindered by the intrinsic disadvantages of traditional materials for decades. Hereby, we report the synthesis of the low dimensional Co based nanorods (NRs) as the effective platform for C=O groups hydrogenation in the conjugated compounds. The Pt/Co-NRs catalyst is simply fabricated by loading the Pt nano-particles (NPs) on the Co-NRs and the stability of the Co-NRs support is improved by coordination between the Pt NPs and the pyridinic N ring. Resorting to XRD, FT-IR, XPS, HRTEM, DTG-TG characterization methods, the catalytic mechanism for C=O bond hydrogenation has been proposed. The synergistic effects of K+ and OH enhance the polarization of C=O group, leading to more adsorption of C=O groups on the Co-NRs so as to promote its hydrogenation performance. In the absence of spatial micropores in low dimensional Co based nanorods, the Pt/Co-NRs catalyst is more advantageous for mass transfer. Under optimal conditions, the conversion of cinnamaldehyde is 97.9% with 92.7% selectivity of cinnamyl alcohol within 3 h. In addition, the selectivity of cinnamyl alcohol changes slightly (only 2.4% fluctuations) after five recycle tests.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mäki-Arvela P, Hájek J, Salmi T, Murzin DY (2005) Appl Catal A 292:1–49

    Article  CAS  Google Scholar 

  2. Blaser H-U, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Adv Synth Catal 345:103–151

    Article  CAS  Google Scholar 

  3. Liu X, Cheng S, Long J, Zhang W, Liu X, Wei D (2017) Mater Chem Front 1:2005–2012

    Article  CAS  Google Scholar 

  4. Hu Q, Wang S, Gao Z, Li Y, Zhang Q, Xiang Q et al (2017) Appl Catal B 218:591–599

    Article  CAS  Google Scholar 

  5. Song S, Liu X, Li J, Pan J, Wang F, Xing Y et al (2017) Adv Mater 29:1700495

    Article  CAS  Google Scholar 

  6. Hao C-H, Guo X-N, Pan Y-T, Chen S, Jiao Z-F, Yang H et al (2016) J Am Chem Soc 138:9361–9364

    Article  CAS  PubMed  Google Scholar 

  7. Siddqui N, Sarkar B, Pendem C, Khatun R, Sivakumar Konthala LN, Sasaki T et al (2017) Catal Sci Technol 7:2828–2837

    Article  CAS  Google Scholar 

  8. Piqueras CM, Puccia V, Vega DA, Volpe MA (2016) Appl Catal B 185:265–271

    Article  CAS  Google Scholar 

  9. He S, Xie L, Che M, Chan HC, Yang L, Shi Z et al (2016) J Mol Catal A 425:248–254

    Article  CAS  Google Scholar 

  10. Wei S, Zhao Y, Fan G, Yang L, Li F (2017) Chem Eng J 322:234–245

    Article  CAS  Google Scholar 

  11. Ji X, Niu X, Li B, Han Q, Yuan F, Zaera F et al (2014) ChemCatChem 6:3246–3253

    Article  CAS  Google Scholar 

  12. Chen S, Meng L, Chen B, Chen W, Duan X, Huang X et al (2017) ACS Catal 7:2074–2087

    Article  CAS  Google Scholar 

  13. Zhang Y, Chen C, Gong W-B, Song J-Y, Su Y-P, Zhang H-M et al (2017) Chin J Chem Phys 30:467–473

    Article  CAS  Google Scholar 

  14. Pan H, Li J, Lu J, Wang G, Xie W, Wu P et al (2017) J Catal 354:24–36

    Article  CAS  Google Scholar 

  15. Ramosfernandez E, Ferreira A, Sepulvedaescribano A, Kapteijn F, Rodriguezreinoso F (2008) Enhancing. J Catal 258:52–60

    Article  CAS  Google Scholar 

  16. Chen X, Zhu H, Song X, Du H, Wang T, Zhao Z et al (2017) React Kinet Mech Cat 120:637–649

    Article  CAS  Google Scholar 

  17. Hu S, Liu M, Ding F, Song C, Zhang G, Guo X (2016) J CO2 Util 15:89–95.

    Article  CAS  Google Scholar 

  18. Yuan Q, Zhang D, Haandel LV, Ye F, Xue T, Hensen EJM et al (2015) J Mol Catal A 406:58–64

    Article  CAS  Google Scholar 

  19. Chen L, Zhan W, Fang H, Cao Z, Yuan C, Xie Z et al (2017) Chem Eur J 23:11397–11403

    Article  CAS  PubMed  Google Scholar 

  20. Guo Z, Xiao C, Maligalganesh RV, Zhou L, Tian WG, Li X et al (2014) ACS Catal 4:1340–1348

    Article  CAS  Google Scholar 

  21. Zhao M, Yuan K, Wang Y, Li G, Guo J, Gu L et al (2016) Nature 539:76–80

    Article  CAS  PubMed  Google Scholar 

  22. Yuan K, Song T, Wang D, Zhang X, Gao X, Zou Y et al (2018) Angew Chem Int Ed Engl 57:5708–5713

    Article  CAS  PubMed  Google Scholar 

  23. Liu J, Yu H, Wang L, Deng Z, Naveed K-U-R, Nazir A et al (2018) Inorg Chim Acta 483:550–564

    Article  CAS  Google Scholar 

  24. Zhu W, Zhang C, Li Q, Xiong L, Chen R, Wan X et al (2018) Appl Catal B 238:339–345

    Article  CAS  Google Scholar 

  25. Liang Y, Shang R, Lu J, Liu L, Hu J, Cui W (2018) ACS Appl Mater Inter 10:8758–8769

    Article  CAS  Google Scholar 

  26. Zhao L, Dong B, Li S, Zhou L, Lai L, Wang Z et al (2017) ACS Nano 11:5800–5807

    Article  CAS  PubMed  Google Scholar 

  27. Teranishi T, Hosoe M, Tanaka T, Miyake M (1999) J Phys Chem B 103:3818–3827

    Article  CAS  Google Scholar 

  28. Lin Y, Wan H, Chen F, Liu X, Ma R, Sasaki T (2018) Dalton Trans 47:7694–7700

    Article  CAS  PubMed  Google Scholar 

  29. Ning X, Yu H, Peng F, Wang H (2015) J Catal 325:136–144

    Article  CAS  Google Scholar 

  30. Bolzan GR, Abarca G, Gonçalves WDG, Matos CF, Santos MJL, Dupont J (2018) Chem Eur J 24:1365–1372

    Article  CAS  PubMed  Google Scholar 

  31. Lu J, Yu C, Niu T, Paliwala T, Crisci G, Somosa F et al (1998) Inorg Chem 37:4637–4640

    Article  CAS  PubMed  Google Scholar 

  32. Zhuang Z, Cheng J, Wang X, Zhao B, Han X, Luo Y (2007) Spectrochim Acta A 67:509–516

    Article  CAS  Google Scholar 

  33. Topaçli A, Akyüz S (1995) Spectrochim Acta A 51:633–641

    Article  Google Scholar 

  34. Keane MP, de Brito AN, Correia N, Svensson S, Lunell S (1991) Chem Phys 155:379–387

    Article  CAS  Google Scholar 

  35. Clark DT, Adams DB, Dilks A, Peeling J, Thomas HR (1976) J Electron Spectrosc Relat Phenom 8:51–60

    Article  CAS  Google Scholar 

  36. Liao J-H, Cheng S-H, Su C-T (2002) Inorg Chem Commun 5:761–764

    Article  CAS  Google Scholar 

  37. Leng F, Gerber IC, Axet MR, Serp P (2017) Chim 21:346–353

    Article  CAS  Google Scholar 

  38. Singh UK, Vannice MA (2001) Appl Catal A 213:1–24

    Article  CAS  Google Scholar 

  39. Manikandan D, Divakar D, Sivakumar T (2007) Catal Commun 8:1781–1786

    Article  CAS  Google Scholar 

  40. He S, Shao Z-J, Shu Y, Shi Z, Gao X-M, Gao Q, Hu P, Tang Y (2016) Chem Eur J 22:5698–5704

    Article  CAS  PubMed  Google Scholar 

  41. Chen T, Shi Z, Zhang G, Chan H-C, Shu Y, Gao Q, Tang Y (2018) ACS Appl Mater Interface 10:42475–42483

    Article  CAS  Google Scholar 

  42. Prashar AK, Mayadevi S, Nandini Devi R (2012) Catal Commun 28:42–46

    Article  CAS  Google Scholar 

  43. Wu Q, Zhang C, Zhang B, Li X, Ying Z, Liu T et al (2016) J Colloid Interface Sci 463:75–82

    Article  CAS  PubMed  Google Scholar 

  44. Zheng Q, Wang D, Yuan F, Han Q, Dong Y, Liu Y et al (2016) Catal Lett 146:1535–1543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Basic and Frontier Research Project of Chongqing in China (No. cstc2016jcyjA0139). I gratefully acknowledge myself and Pro Xia for having revised this manuscript on New year’s Day in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Liu, D., Gu, J. et al. The Low Dimensional Co-Based Nanorods as a Novel Platform for Selective Hydrogenation of Cinnamaldehyde. Catal Lett 149, 2906–2915 (2019). https://doi.org/10.1007/s10562-019-02787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02787-7

Keywords

Navigation