Skip to main content

Advertisement

Log in

Titania Nanotube Derived Titanium Nitride Nano-cluster for Visible Light Driven Water Splitting

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Herein, titanium nitride (TN) nano cluster was synthesized through NH3 nitrification of titania nanotubes. The effect of nitrification temperature on the formation of TN was investigated by characterizations of X-ray diffractometer, Transmission electron microscopy, Diffuse reflectance UV–vis spectra, X-ray photoelectron spectroscopy, etc. The TN-900, nitrificated at 900 °C, demonstrated high hydrogen (H2) yield in visible light-induced water splitting owing to a narrow energy band gap, unique nano-cluster structure, reasonable surface area and excellent electrical conductivity, which promoted light harvesting, reactant adsorption, and photo-electron–hole separation.

Graphical Abstract

Titanium nitride (TN) nano-clusters were synthesized through NH3 nitrification of titania nanotubes. The TN-900, nitrificated at 900 °C, exhibited high H2 yield and good recycle usability in visible light-induced water splitting owing to a narrow energy band gap, unique nano-cluster structure, reasonable surface area and excellent electrical conductivity, which promoted light harvesting, reactant adsorption, and photo-electron–hole separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cobo S, Heidkamp J, Jacques PA, Fize J, Fourmond V, Guetaz L, Jousselme B, Ivanova V (2012) Nat Mater 11:802

    Article  CAS  PubMed  Google Scholar 

  2. Sengodan S, Lan R, Humphreys J, Du D, Xu W, Wang H, Tao S (2018) Renew Sust Energ Rev 82:761

    Article  CAS  Google Scholar 

  3. Amin AM, Croiset E, Epling W (2011) Int J Hydrog Energy 36:2904

    Article  CAS  Google Scholar 

  4. Zhou Y, Yi QY, Xing MY, Shang L, Zhang TR, Zhang JL (2016) Chem Commun 52:1689

    Article  CAS  Google Scholar 

  5. Hameed A, Gondal MA, Yamani ZH (2004) Catal Commun 5:715

    Article  CAS  Google Scholar 

  6. Liu Z, Xu J, Li Y, Yu H (2018) Catal Lett 148:3205

    Article  CAS  Google Scholar 

  7. Yang X, Wu LP, Du L, Li XJ (2015) Catal Lett 145:1771

    Article  CAS  Google Scholar 

  8. Wen JQ, Xie J, Chen XB, Li X (2017) Appl Surf Sci 391:72

    Article  CAS  Google Scholar 

  9. Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) Energy Environ Sci 9:709

    Article  CAS  Google Scholar 

  10. Xiang Q, Yu J, Jaroniec M (2012) J Am Chem Soc 134:6575

    Article  CAS  Google Scholar 

  11. Villa K, Domènech X, García-Pérez UM, Peral J (2016) Catal Lett 146:100

    Article  CAS  Google Scholar 

  12. Fujishima A, Honda K (1972) Nature 238:37

    Article  CAS  PubMed  Google Scholar 

  13. Teng F, Zhang G, Wang Y, Gao C, Zhang Z, Xie E (2015) J Mater Sci 50:2921

    Article  CAS  Google Scholar 

  14. Liu E, Fan J, Hu X, Hu Y, Li H, Tang C, Sun L, Wan J (2015) J Mater Sci 50:2298

    Article  CAS  Google Scholar 

  15. Yang X, Liang H, Wu LP, Zhang J, Huang Y, Li XJ (2017) Mater Res Bull 93:162

    Article  CAS  Google Scholar 

  16. Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Nano Lett 3:1049

    Article  CAS  Google Scholar 

  17. Buchholcz B, Plank K, Mohai M, Kukovecz Á, Kiss J, Bertóti I, Kónya Z (2018) Top Catal 61:1263

    Article  CAS  Google Scholar 

  18. Kukovecz Á, Kordás K, Kiss J, Kónya Z (2016) Surf Sci Rep 71:473

    Article  CAS  Google Scholar 

  19. Chiarello GL, Selli E, Forni L (2008) Appl Catal B 84:332

    Article  CAS  Google Scholar 

  20. Yang X, Liang HG, Wu LP, Zhang JF, Huang YQ, Li XJ (2017) Mater Res Bull 93:162

    Article  CAS  Google Scholar 

  21. Li G, Zhang P, Bian Z, Zhu J, Wu L, Li H (2013) Chemsuschem 6:1461

    Article  CAS  PubMed  Google Scholar 

  22. Yang T, Li Q, Chang X, Chou KC, Hou X (2015) Phys Chem Chem Phys 17:28782

    Article  CAS  PubMed  Google Scholar 

  23. Urcan G, Sergey S, Alexandra B (2015) Nanophotonics 4:269

    Google Scholar 

  24. Chen JJ, Wu JCS, Wu PC, Tsai DP (2011) J Phys Chem C 115:210

    Article  CAS  Google Scholar 

  25. Li CT, Li SR, Chang LY, Lee CP, Chen PY, Sun SS, Lin JJ, Vittal R (2015) J Mater Chem A 3:4695

    Article  CAS  Google Scholar 

  26. Bertóti I (2012) Catal Today 181:95

    Article  CAS  Google Scholar 

  27. López R, Gómez R (2012) J Sol-Gel Sci Technol 61:1

    Article  CAS  Google Scholar 

  28. Angelo J, Andrade L, Mendes A (2014) Appl Catal A 484:17

    Article  CAS  Google Scholar 

  29. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    Article  CAS  Google Scholar 

  30. Wang XY, Yang X, Miao L, Gao J, Wu LP, Wang N, Li XJ (2018) Int J Hydrog Energy 43:10950

    Article  CAS  Google Scholar 

  31. Falodun OE, Obadele BA, Oke SR, Maja ME, Olubambi PA (2018) J Alloys Compd 736:202

    Article  CAS  Google Scholar 

  32. Garbrecht M, Hultman L, Fawey MH, Sands TD, Saha B (2018) J Mater Sci 53:4001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Guangdong Province (No. 2015A030313715, 2018A030310134), National Science Foundation of China (No. 21303210) and Science & Technology Plan Project of Guangzhou City (No. 201803030019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinjun Li or Xu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, L., Li, J. et al. Titania Nanotube Derived Titanium Nitride Nano-cluster for Visible Light Driven Water Splitting. Catal Lett 149, 61–68 (2019). https://doi.org/10.1007/s10562-018-2614-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2614-y

Keywords

Navigation